Add XGBoostRegressorMultiTarget class
This commit is contained in:
parent
1b6410d7d1
commit
df6e43d2c5
@ -0,0 +1,43 @@
|
|||||||
|
import logging
|
||||||
|
from typing import Any, Dict
|
||||||
|
|
||||||
|
from sklearn.multioutput import MultiOutputRegressor
|
||||||
|
from xgboost import XGBRegressor
|
||||||
|
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class XGBoostRegressorMultiTarget(BaseRegressionModel):
|
||||||
|
"""
|
||||||
|
User created prediction model. The class needs to override three necessary
|
||||||
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||||
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||||
|
"""
|
||||||
|
User sets up the training and test data to fit their desired model here
|
||||||
|
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||||
|
all the training and test data/labels.
|
||||||
|
"""
|
||||||
|
|
||||||
|
xgb = XGBRegressor(**self.model_training_parameters)
|
||||||
|
|
||||||
|
X = data_dictionary["train_features"]
|
||||||
|
y = data_dictionary["train_labels"]
|
||||||
|
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||||||
|
sample_weight = data_dictionary["train_weights"]
|
||||||
|
|
||||||
|
if self.continual_learning:
|
||||||
|
logger.warning('Continual learning not supported for MultiTarget models')
|
||||||
|
|
||||||
|
model = MultiOutputRegressor(estimator=xgb)
|
||||||
|
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
||||||
|
train_score = model.score(X, y)
|
||||||
|
test_score = model.score(*eval_set)
|
||||||
|
logger.info(f"Train score {train_score}, Test score {test_score}")
|
||||||
|
return model
|
@ -203,6 +203,37 @@ def test_train_model_in_series_XGBoostRegressor(mocker, freqai_conf):
|
|||||||
shutil.rmtree(Path(freqai.dk.full_path))
|
shutil.rmtree(Path(freqai.dk.full_path))
|
||||||
|
|
||||||
|
|
||||||
|
def test_train_model_in_series_XGBoostRegressorMultiModel(mocker, freqai_conf):
|
||||||
|
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||||
|
freqai_conf.update({"freqaimodel": "XGBoostRegressorMultiTarget"})
|
||||||
|
freqai_conf.update({"strategy": "freqai_test_multimodel_strat"})
|
||||||
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||||
|
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||||
|
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||||
|
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||||
|
freqai = strategy.freqai
|
||||||
|
freqai.live = True
|
||||||
|
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||||
|
timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||||
|
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||||
|
|
||||||
|
freqai.dd.pair_dict = MagicMock()
|
||||||
|
|
||||||
|
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||||
|
new_timerange = TimeRange.parse_timerange("20180120-20180130")
|
||||||
|
|
||||||
|
freqai.train_model_in_series(new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
|
||||||
|
|
||||||
|
assert len(freqai.dk.label_list) == 2
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").is_file()
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").is_file()
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").is_file()
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").is_file()
|
||||||
|
assert len(freqai.dk.data['training_features_list']) == 26
|
||||||
|
|
||||||
|
shutil.rmtree(Path(freqai.dk.full_path))
|
||||||
|
|
||||||
|
|
||||||
def test_start_backtesting(mocker, freqai_conf):
|
def test_start_backtesting(mocker, freqai_conf):
|
||||||
freqai_conf.update({"timerange": "20180120-20180130"})
|
freqai_conf.update({"timerange": "20180120-20180130"})
|
||||||
freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
|
freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
|
||||||
|
Loading…
Reference in New Issue
Block a user