Add XGBoostRegressorMultiTarget class

This commit is contained in:
Emre 2022-09-09 00:11:09 +03:00 committed by Robert Caulk
parent 1b6410d7d1
commit df6e43d2c5
2 changed files with 74 additions and 0 deletions

View File

@ -0,0 +1,43 @@
import logging
from typing import Any, Dict
from sklearn.multioutput import MultiOutputRegressor
from xgboost import XGBRegressor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
logger = logging.getLogger(__name__)
class XGBoostRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
xgb = XGBRegressor(**self.model_training_parameters)
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
sample_weight = data_dictionary["train_weights"]
if self.continual_learning:
logger.warning('Continual learning not supported for MultiTarget models')
model = MultiOutputRegressor(estimator=xgb)
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
train_score = model.score(X, y)
test_score = model.score(*eval_set)
logger.info(f"Train score {train_score}, Test score {test_score}")
return model

View File

@ -203,6 +203,37 @@ def test_train_model_in_series_XGBoostRegressor(mocker, freqai_conf):
shutil.rmtree(Path(freqai.dk.full_path)) shutil.rmtree(Path(freqai.dk.full_path))
def test_train_model_in_series_XGBoostRegressorMultiModel(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180110-20180130"})
freqai_conf.update({"freqaimodel": "XGBoostRegressorMultiTarget"})
freqai_conf.update({"strategy": "freqai_test_multimodel_strat"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
new_timerange = TimeRange.parse_timerange("20180120-20180130")
freqai.train_model_in_series(new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
assert len(freqai.dk.label_list) == 2
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").is_file()
assert len(freqai.dk.data['training_features_list']) == 26
shutil.rmtree(Path(freqai.dk.full_path))
def test_start_backtesting(mocker, freqai_conf): def test_start_backtesting(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180120-20180130"}) freqai_conf.update({"timerange": "20180120-20180130"})
freqai_conf.get("freqai", {}).update({"save_backtest_models": True}) freqai_conf.get("freqai", {}).update({"save_backtest_models": True})