refactoring freqai backtesting
This commit is contained in:
parent
4aec2db14d
commit
df51da22ee
@ -1,6 +1,7 @@
|
||||
import copy
|
||||
import datetime
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
@ -780,9 +781,10 @@ class FreqaiDataKitchen:
|
||||
weights = np.exp(-np.arange(num_weights) / (wfactor * num_weights))[::-1]
|
||||
return weights
|
||||
|
||||
def append_predictions(self, predictions: DataFrame, do_predict: npt.ArrayLike) -> None:
|
||||
def get_predictions_to_append(self, predictions: DataFrame,
|
||||
do_predict: npt.ArrayLike) -> DataFrame:
|
||||
"""
|
||||
Append backtest prediction from current backtest period to all previous periods
|
||||
Get backtest prediction from current backtest period
|
||||
"""
|
||||
|
||||
append_df = DataFrame()
|
||||
@ -797,12 +799,19 @@ class FreqaiDataKitchen:
|
||||
if self.freqai_config["feature_parameters"].get("DI_threshold", 0) > 0:
|
||||
append_df["DI_values"] = self.DI_values
|
||||
|
||||
return append_df
|
||||
|
||||
def append_predictions(self, append_df: DataFrame) -> None:
|
||||
"""
|
||||
Append backtest prediction from current backtest period to all previous periods
|
||||
"""
|
||||
|
||||
if self.full_df.empty:
|
||||
self.full_df = append_df
|
||||
else:
|
||||
self.full_df = pd.concat([self.full_df, append_df], axis=0)
|
||||
|
||||
return
|
||||
return append_df
|
||||
|
||||
def fill_predictions(self, dataframe):
|
||||
"""
|
||||
@ -1089,3 +1098,25 @@ class FreqaiDataKitchen:
|
||||
if self.unique_classes:
|
||||
for label in self.unique_classes:
|
||||
self.unique_class_list += list(self.unique_classes[label])
|
||||
|
||||
def save_backtesting_prediction(
|
||||
self, file_name: str, root_folder: str, append_df: DataFrame
|
||||
) -> None:
|
||||
|
||||
"""
|
||||
Save prediction dataframe from backtesting to h5 file format
|
||||
:param file_name: h5 file name
|
||||
:param root_folder: folder to save h5 file
|
||||
"""
|
||||
os.makedirs(root_folder, exist_ok=True)
|
||||
append_df.to_hdf(file_name, key='append_df', mode='w')
|
||||
|
||||
def get_backtesting_prediction(self, prediction_file_name: str) -> DataFrame:
|
||||
"""
|
||||
Retrive from disk the prediction dataframe
|
||||
:param prediction_file_name: prediction file full path
|
||||
:return:
|
||||
:Dataframe: Backtesting prediction from current backtesting period
|
||||
"""
|
||||
append_df = pd.read_hdf(prediction_file_name)
|
||||
return append_df
|
||||
|
@ -224,13 +224,26 @@ class IFreqaiModel(ABC):
|
||||
"trains"
|
||||
)
|
||||
|
||||
trained_timestamp_int = int(trained_timestamp.stopts)
|
||||
dk.data_path = Path(
|
||||
dk.full_path
|
||||
/
|
||||
f"sub-train-{metadata['pair'].split('/')[0]}_{int(trained_timestamp.stopts)}"
|
||||
f"sub-train-{metadata['pair'].split('/')[0]}_{trained_timestamp_int}"
|
||||
)
|
||||
|
||||
if self.backtest_prediction_exists(
|
||||
metadata["pair"], dk, trained_timestamp=trained_timestamp_int
|
||||
):
|
||||
prediction_filename, _ = self.get_backtesting_prediction_file_name(
|
||||
metadata["pair"],
|
||||
dk,
|
||||
trained_timestamp=int(trained_timestamp.stopts))
|
||||
|
||||
append_df = dk.get_backtesting_prediction(prediction_filename)
|
||||
dk.append_predictions(append_df)
|
||||
else:
|
||||
if not self.model_exists(
|
||||
metadata["pair"], dk, trained_timestamp=int(trained_timestamp.stopts)
|
||||
metadata["pair"], dk, trained_timestamp=trained_timestamp_int
|
||||
):
|
||||
dk.find_features(dataframe_train)
|
||||
self.model = self.train(dataframe_train, metadata["pair"], dk)
|
||||
@ -244,8 +257,17 @@ class IFreqaiModel(ABC):
|
||||
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
|
||||
|
||||
pred_df, do_preds = self.predict(dataframe_backtest, dk)
|
||||
append_df = dk.get_predictions_to_append(pred_df, do_preds)
|
||||
dk.append_predictions(append_df)
|
||||
|
||||
dk.append_predictions(pred_df, do_preds)
|
||||
prediction_file_name, root_prediction = self.get_backtesting_prediction_file_name(
|
||||
metadata["pair"],
|
||||
dk,
|
||||
trained_timestamp_int)
|
||||
|
||||
dk.save_backtesting_prediction(prediction_file_name,
|
||||
root_prediction,
|
||||
append_df)
|
||||
|
||||
dk.fill_predictions(dataframe)
|
||||
|
||||
@ -643,6 +665,56 @@ class IFreqaiModel(ABC):
|
||||
self.train_time = 0
|
||||
return
|
||||
|
||||
def backtest_prediction_exists(
|
||||
self,
|
||||
pair: str,
|
||||
dk: FreqaiDataKitchen,
|
||||
trained_timestamp: int,
|
||||
scanning: bool = False,
|
||||
) -> bool:
|
||||
"""
|
||||
Given a pair and path, check if a backtesting prediction already exists
|
||||
:param pair: pair e.g. BTC/USD
|
||||
:param path: path to prediction
|
||||
:return:
|
||||
:boolean: whether the prediction file exists or not.
|
||||
"""
|
||||
if not self.live:
|
||||
prediction_file_name, _ = self.get_backtesting_prediction_file_name(
|
||||
pair, dk, trained_timestamp
|
||||
)
|
||||
path_to_predictionfile = Path(prediction_file_name)
|
||||
|
||||
file_exists = path_to_predictionfile.is_file()
|
||||
if file_exists and not scanning:
|
||||
logger.info("Found backtesting prediction file at %s", prediction_file_name)
|
||||
elif not scanning:
|
||||
logger.info(
|
||||
"Could not find backtesting prediction file at %s", prediction_file_name
|
||||
)
|
||||
return file_exists
|
||||
else:
|
||||
return False
|
||||
|
||||
def get_backtesting_prediction_file_name(
|
||||
self, pair: str, dk: FreqaiDataKitchen, trained_timestamp: int
|
||||
):
|
||||
"""
|
||||
Given a pair, path and a trained timestamp,
|
||||
returns the path and name of the predictions file
|
||||
:param pair: pair e.g. BTC/USD
|
||||
:param dk: FreqaiDataKitchen
|
||||
:trained_timestamp: current backtesting timestamp period
|
||||
:return:
|
||||
:str: prediction file name
|
||||
:str: prediction root path
|
||||
"""
|
||||
coin, _ = pair.split("/")
|
||||
prediction_base_filename = f"{coin.lower()}_{trained_timestamp}"
|
||||
root_prediction = f'{dk.full_path}/backtesting_predictions'
|
||||
prediction_file_name = f"{root_prediction}/{prediction_base_filename}_predictions.h5"
|
||||
return prediction_file_name, root_prediction
|
||||
|
||||
# Following methods which are overridden by user made prediction models.
|
||||
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user