refactoring freqai backtesting

This commit is contained in:
Wagner Costa Santos 2022-08-31 11:23:48 -03:00
parent 4aec2db14d
commit df51da22ee
2 changed files with 119 additions and 16 deletions

View File

@ -1,6 +1,7 @@
import copy
import datetime
import logging
import os
import shutil
from pathlib import Path
from typing import Any, Dict, List, Tuple
@ -780,9 +781,10 @@ class FreqaiDataKitchen:
weights = np.exp(-np.arange(num_weights) / (wfactor * num_weights))[::-1]
return weights
def append_predictions(self, predictions: DataFrame, do_predict: npt.ArrayLike) -> None:
def get_predictions_to_append(self, predictions: DataFrame,
do_predict: npt.ArrayLike) -> DataFrame:
"""
Append backtest prediction from current backtest period to all previous periods
Get backtest prediction from current backtest period
"""
append_df = DataFrame()
@ -797,12 +799,19 @@ class FreqaiDataKitchen:
if self.freqai_config["feature_parameters"].get("DI_threshold", 0) > 0:
append_df["DI_values"] = self.DI_values
return append_df
def append_predictions(self, append_df: DataFrame) -> None:
"""
Append backtest prediction from current backtest period to all previous periods
"""
if self.full_df.empty:
self.full_df = append_df
else:
self.full_df = pd.concat([self.full_df, append_df], axis=0)
return
return append_df
def fill_predictions(self, dataframe):
"""
@ -1089,3 +1098,25 @@ class FreqaiDataKitchen:
if self.unique_classes:
for label in self.unique_classes:
self.unique_class_list += list(self.unique_classes[label])
def save_backtesting_prediction(
self, file_name: str, root_folder: str, append_df: DataFrame
) -> None:
"""
Save prediction dataframe from backtesting to h5 file format
:param file_name: h5 file name
:param root_folder: folder to save h5 file
"""
os.makedirs(root_folder, exist_ok=True)
append_df.to_hdf(file_name, key='append_df', mode='w')
def get_backtesting_prediction(self, prediction_file_name: str) -> DataFrame:
"""
Retrive from disk the prediction dataframe
:param prediction_file_name: prediction file full path
:return:
:Dataframe: Backtesting prediction from current backtesting period
"""
append_df = pd.read_hdf(prediction_file_name)
return append_df

View File

@ -224,13 +224,26 @@ class IFreqaiModel(ABC):
"trains"
)
trained_timestamp_int = int(trained_timestamp.stopts)
dk.data_path = Path(
dk.full_path
/
f"sub-train-{metadata['pair'].split('/')[0]}_{int(trained_timestamp.stopts)}"
f"sub-train-{metadata['pair'].split('/')[0]}_{trained_timestamp_int}"
)
if self.backtest_prediction_exists(
metadata["pair"], dk, trained_timestamp=trained_timestamp_int
):
prediction_filename, _ = self.get_backtesting_prediction_file_name(
metadata["pair"],
dk,
trained_timestamp=int(trained_timestamp.stopts))
append_df = dk.get_backtesting_prediction(prediction_filename)
dk.append_predictions(append_df)
else:
if not self.model_exists(
metadata["pair"], dk, trained_timestamp=int(trained_timestamp.stopts)
metadata["pair"], dk, trained_timestamp=trained_timestamp_int
):
dk.find_features(dataframe_train)
self.model = self.train(dataframe_train, metadata["pair"], dk)
@ -244,8 +257,17 @@ class IFreqaiModel(ABC):
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
pred_df, do_preds = self.predict(dataframe_backtest, dk)
append_df = dk.get_predictions_to_append(pred_df, do_preds)
dk.append_predictions(append_df)
dk.append_predictions(pred_df, do_preds)
prediction_file_name, root_prediction = self.get_backtesting_prediction_file_name(
metadata["pair"],
dk,
trained_timestamp_int)
dk.save_backtesting_prediction(prediction_file_name,
root_prediction,
append_df)
dk.fill_predictions(dataframe)
@ -643,6 +665,56 @@ class IFreqaiModel(ABC):
self.train_time = 0
return
def backtest_prediction_exists(
self,
pair: str,
dk: FreqaiDataKitchen,
trained_timestamp: int,
scanning: bool = False,
) -> bool:
"""
Given a pair and path, check if a backtesting prediction already exists
:param pair: pair e.g. BTC/USD
:param path: path to prediction
:return:
:boolean: whether the prediction file exists or not.
"""
if not self.live:
prediction_file_name, _ = self.get_backtesting_prediction_file_name(
pair, dk, trained_timestamp
)
path_to_predictionfile = Path(prediction_file_name)
file_exists = path_to_predictionfile.is_file()
if file_exists and not scanning:
logger.info("Found backtesting prediction file at %s", prediction_file_name)
elif not scanning:
logger.info(
"Could not find backtesting prediction file at %s", prediction_file_name
)
return file_exists
else:
return False
def get_backtesting_prediction_file_name(
self, pair: str, dk: FreqaiDataKitchen, trained_timestamp: int
):
"""
Given a pair, path and a trained timestamp,
returns the path and name of the predictions file
:param pair: pair e.g. BTC/USD
:param dk: FreqaiDataKitchen
:trained_timestamp: current backtesting timestamp period
:return:
:str: prediction file name
:str: prediction root path
"""
coin, _ = pair.split("/")
prediction_base_filename = f"{coin.lower()}_{trained_timestamp}"
root_prediction = f'{dk.full_path}/backtesting_predictions'
prediction_file_name = f"{root_prediction}/{prediction_base_filename}_predictions.h5"
return prediction_file_name, root_prediction
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example.