refactoring freqai backtesting

This commit is contained in:
Wagner Costa Santos
2022-08-31 11:23:48 -03:00
parent 4aec2db14d
commit df51da22ee
2 changed files with 119 additions and 16 deletions

View File

@@ -224,28 +224,50 @@ class IFreqaiModel(ABC):
"trains"
)
trained_timestamp_int = int(trained_timestamp.stopts)
dk.data_path = Path(
dk.full_path
/
f"sub-train-{metadata['pair'].split('/')[0]}_{int(trained_timestamp.stopts)}"
f"sub-train-{metadata['pair'].split('/')[0]}_{trained_timestamp_int}"
)
if not self.model_exists(
metadata["pair"], dk, trained_timestamp=int(trained_timestamp.stopts)
if self.backtest_prediction_exists(
metadata["pair"], dk, trained_timestamp=trained_timestamp_int
):
dk.find_features(dataframe_train)
self.model = self.train(dataframe_train, metadata["pair"], dk)
self.dd.pair_dict[metadata["pair"]]["trained_timestamp"] = int(
trained_timestamp.stopts)
dk.set_new_model_names(metadata["pair"], trained_timestamp)
self.dd.save_data(self.model, metadata["pair"], dk)
prediction_filename, _ = self.get_backtesting_prediction_file_name(
metadata["pair"],
dk,
trained_timestamp=int(trained_timestamp.stopts))
append_df = dk.get_backtesting_prediction(prediction_filename)
dk.append_predictions(append_df)
else:
self.model = self.dd.load_data(metadata["pair"], dk)
if not self.model_exists(
metadata["pair"], dk, trained_timestamp=trained_timestamp_int
):
dk.find_features(dataframe_train)
self.model = self.train(dataframe_train, metadata["pair"], dk)
self.dd.pair_dict[metadata["pair"]]["trained_timestamp"] = int(
trained_timestamp.stopts)
dk.set_new_model_names(metadata["pair"], trained_timestamp)
self.dd.save_data(self.model, metadata["pair"], dk)
else:
self.model = self.dd.load_data(metadata["pair"], dk)
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
pred_df, do_preds = self.predict(dataframe_backtest, dk)
pred_df, do_preds = self.predict(dataframe_backtest, dk)
append_df = dk.get_predictions_to_append(pred_df, do_preds)
dk.append_predictions(append_df)
dk.append_predictions(pred_df, do_preds)
prediction_file_name, root_prediction = self.get_backtesting_prediction_file_name(
metadata["pair"],
dk,
trained_timestamp_int)
dk.save_backtesting_prediction(prediction_file_name,
root_prediction,
append_df)
dk.fill_predictions(dataframe)
@@ -643,6 +665,56 @@ class IFreqaiModel(ABC):
self.train_time = 0
return
def backtest_prediction_exists(
self,
pair: str,
dk: FreqaiDataKitchen,
trained_timestamp: int,
scanning: bool = False,
) -> bool:
"""
Given a pair and path, check if a backtesting prediction already exists
:param pair: pair e.g. BTC/USD
:param path: path to prediction
:return:
:boolean: whether the prediction file exists or not.
"""
if not self.live:
prediction_file_name, _ = self.get_backtesting_prediction_file_name(
pair, dk, trained_timestamp
)
path_to_predictionfile = Path(prediction_file_name)
file_exists = path_to_predictionfile.is_file()
if file_exists and not scanning:
logger.info("Found backtesting prediction file at %s", prediction_file_name)
elif not scanning:
logger.info(
"Could not find backtesting prediction file at %s", prediction_file_name
)
return file_exists
else:
return False
def get_backtesting_prediction_file_name(
self, pair: str, dk: FreqaiDataKitchen, trained_timestamp: int
):
"""
Given a pair, path and a trained timestamp,
returns the path and name of the predictions file
:param pair: pair e.g. BTC/USD
:param dk: FreqaiDataKitchen
:trained_timestamp: current backtesting timestamp period
:return:
:str: prediction file name
:str: prediction root path
"""
coin, _ = pair.split("/")
prediction_base_filename = f"{coin.lower()}_{trained_timestamp}"
root_prediction = f'{dk.full_path}/backtesting_predictions'
prediction_file_name = f"{root_prediction}/{prediction_base_filename}_predictions.h5"
return prediction_file_name, root_prediction
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example.