refactoring freqai backtesting

This commit is contained in:
Wagner Costa Santos
2022-08-31 11:23:48 -03:00
parent 4aec2db14d
commit df51da22ee
2 changed files with 119 additions and 16 deletions

View File

@@ -1,6 +1,7 @@
import copy
import datetime
import logging
import os
import shutil
from pathlib import Path
from typing import Any, Dict, List, Tuple
@@ -780,9 +781,10 @@ class FreqaiDataKitchen:
weights = np.exp(-np.arange(num_weights) / (wfactor * num_weights))[::-1]
return weights
def append_predictions(self, predictions: DataFrame, do_predict: npt.ArrayLike) -> None:
def get_predictions_to_append(self, predictions: DataFrame,
do_predict: npt.ArrayLike) -> DataFrame:
"""
Append backtest prediction from current backtest period to all previous periods
Get backtest prediction from current backtest period
"""
append_df = DataFrame()
@@ -797,12 +799,19 @@ class FreqaiDataKitchen:
if self.freqai_config["feature_parameters"].get("DI_threshold", 0) > 0:
append_df["DI_values"] = self.DI_values
return append_df
def append_predictions(self, append_df: DataFrame) -> None:
"""
Append backtest prediction from current backtest period to all previous periods
"""
if self.full_df.empty:
self.full_df = append_df
else:
self.full_df = pd.concat([self.full_df, append_df], axis=0)
return
return append_df
def fill_predictions(self, dataframe):
"""
@@ -1089,3 +1098,25 @@ class FreqaiDataKitchen:
if self.unique_classes:
for label in self.unique_classes:
self.unique_class_list += list(self.unique_classes[label])
def save_backtesting_prediction(
self, file_name: str, root_folder: str, append_df: DataFrame
) -> None:
"""
Save prediction dataframe from backtesting to h5 file format
:param file_name: h5 file name
:param root_folder: folder to save h5 file
"""
os.makedirs(root_folder, exist_ok=True)
append_df.to_hdf(file_name, key='append_df', mode='w')
def get_backtesting_prediction(self, prediction_file_name: str) -> DataFrame:
"""
Retrive from disk the prediction dataframe
:param prediction_file_name: prediction file full path
:return:
:Dataframe: Backtesting prediction from current backtesting period
"""
append_df = pd.read_hdf(prediction_file_name)
return append_df