auto build full_timerange and self manage training_timerange
This commit is contained in:
parent
764f9449b4
commit
def71a0afe
@ -49,12 +49,10 @@
|
||||
}
|
||||
],
|
||||
"freqai": {
|
||||
"btc_pair": "BTC/USDT",
|
||||
"timeframes": [
|
||||
"5m",
|
||||
"15m"
|
||||
],
|
||||
"full_timerange": "20210601-20210901",
|
||||
"train_period": 30,
|
||||
"backtest_period": 7,
|
||||
"identifier": "example",
|
||||
@ -74,7 +72,6 @@
|
||||
"LINK/USDT",
|
||||
"DOT/USDT"
|
||||
],
|
||||
"training_timerange": "20211220-20220117",
|
||||
"feature_parameters": {
|
||||
"period": 12,
|
||||
"shift": 1,
|
||||
|
@ -478,13 +478,11 @@ CONF_SCHEMA = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"timeframes": {"type": "list"},
|
||||
"full_timerange": {"type": "str"},
|
||||
"train_period": {"type": "integer", "default": 0},
|
||||
"backtest_period": {"type": "integer", "default": 7},
|
||||
"identifier": {"type": "str", "default": "example"},
|
||||
"base_features": {"type": "list"},
|
||||
"corr_pairlist": {"type": "list"},
|
||||
"training_timerange": {"type": "string", "default": None},
|
||||
"feature_parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
@ -3,6 +3,7 @@ import datetime
|
||||
import json
|
||||
import logging
|
||||
import pickle as pk
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
@ -30,15 +31,10 @@ class DataHandler:
|
||||
|
||||
def __init__(self, config: Dict[str, Any], dataframe: DataFrame):
|
||||
self.full_dataframe = dataframe
|
||||
(self.training_timeranges, self.backtesting_timeranges) = self.split_timerange(
|
||||
config["freqai"]["full_timerange"],
|
||||
config["freqai"]["train_period"],
|
||||
config["freqai"]["backtest_period"],
|
||||
)
|
||||
self.data: Dict[Any, Any] = {}
|
||||
self.data_dictionary: Dict[Any, Any] = {}
|
||||
self.config = config
|
||||
self.freq_config = config["freqai"]
|
||||
self.freqai_config = config["freqai"]
|
||||
self.predictions = np.array([])
|
||||
self.do_predict = np.array([])
|
||||
self.target_mean = np.array([])
|
||||
@ -46,6 +42,16 @@ class DataHandler:
|
||||
self.model_path = Path()
|
||||
self.model_filename = ""
|
||||
|
||||
self.full_timerange = self.create_fulltimerange(
|
||||
self.config["timerange"], self.freqai_config["train_period"]
|
||||
)
|
||||
|
||||
(self.training_timeranges, self.backtesting_timeranges) = self.split_timerange(
|
||||
self.full_timerange,
|
||||
config["freqai"]["train_period"],
|
||||
config["freqai"]["backtest_period"],
|
||||
)
|
||||
|
||||
def save_data(self, model: Any) -> None:
|
||||
"""
|
||||
Saves all data associated with a model for a single sub-train time range
|
||||
@ -539,6 +545,29 @@ class DataHandler:
|
||||
|
||||
return
|
||||
|
||||
def create_fulltimerange(self, backtest_tr: str, backtest_period: int) -> str:
|
||||
backtest_timerange = TimeRange.parse_timerange(backtest_tr)
|
||||
|
||||
backtest_timerange.startts = backtest_timerange.startts - backtest_period * SECONDS_IN_DAY
|
||||
start = datetime.datetime.utcfromtimestamp(backtest_timerange.startts)
|
||||
stop = datetime.datetime.utcfromtimestamp(backtest_timerange.stopts)
|
||||
full_timerange = start.strftime("%Y%m%d") + "-" + stop.strftime("%Y%m%d")
|
||||
|
||||
self.full_path = Path(
|
||||
self.config["user_data_dir"]
|
||||
/ "models"
|
||||
/ str(full_timerange + self.freqai_config["identifier"])
|
||||
)
|
||||
|
||||
if not self.full_path.is_dir():
|
||||
self.full_path.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(
|
||||
Path(self.config["config_files"][0]).name,
|
||||
Path(self.full_path / self.config["config_files"][0]),
|
||||
)
|
||||
|
||||
return full_timerange
|
||||
|
||||
def np_encoder(self, object):
|
||||
if isinstance(object, np.generic):
|
||||
return object.item()
|
||||
|
@ -1,6 +1,5 @@
|
||||
import gc
|
||||
import logging
|
||||
import shutil
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Tuple
|
||||
@ -32,24 +31,13 @@ class IFreqaiModel(ABC):
|
||||
self.data_split_parameters = config["freqai"]["data_split_parameters"]
|
||||
self.model_training_parameters = config["freqai"]["model_training_parameters"]
|
||||
self.feature_parameters = config["freqai"]["feature_parameters"]
|
||||
self.full_path = Path(
|
||||
config["user_data_dir"]
|
||||
/ "models"
|
||||
/ str(self.freqai_info["full_timerange"] + self.freqai_info["identifier"])
|
||||
)
|
||||
self.backtest_timerange = config["timerange"]
|
||||
|
||||
self.time_last_trained = None
|
||||
self.current_time = None
|
||||
self.model = None
|
||||
self.predictions = None
|
||||
|
||||
if not self.full_path.is_dir():
|
||||
self.full_path.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(
|
||||
self.config["config_files"][0],
|
||||
Path(self.full_path / self.config["config_files"][0]),
|
||||
)
|
||||
|
||||
def start(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Entry point to the FreqaiModel, it will train a new model if
|
||||
@ -82,12 +70,11 @@ class IFreqaiModel(ABC):
|
||||
gc.collect()
|
||||
# self.config['timerange'] = tr_train
|
||||
self.dh.data = {} # clean the pair specific data between models
|
||||
self.freqai_info["training_timerange"] = tr_train
|
||||
self.training_timerange = tr_train
|
||||
dataframe_train = self.dh.slice_dataframe(tr_train, dataframe)
|
||||
dataframe_backtest = self.dh.slice_dataframe(tr_backtest, dataframe)
|
||||
logger.info("training %s for %s", self.pair, tr_train)
|
||||
# self.dh.model_path = self.full_path + "/" + "sub-train" + "-" + str(tr_train) + "/"
|
||||
self.dh.model_path = Path(self.full_path / str("sub-train" + "-" + str(tr_train)))
|
||||
self.dh.model_path = Path(self.dh.full_path / str("sub-train" + "-" + str(tr_train)))
|
||||
if not self.model_exists(self.pair, training_timerange=tr_train):
|
||||
self.model = self.train(dataframe_train, metadata)
|
||||
self.dh.save_data(self.model)
|
||||
|
Loading…
Reference in New Issue
Block a user