Streamline trade to dataframe conversion
This commit is contained in:
parent
8ee264bc59
commit
deb8432d33
@ -2,9 +2,8 @@
|
||||
Helpers when analyzing backtest data
|
||||
"""
|
||||
import logging
|
||||
from datetime import timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@ -16,9 +15,21 @@ from freqtrade.persistence import Trade, init_db
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# must align with columns in backtest.py
|
||||
BT_DATA_COLUMNS = ["pair", "profit_percent", "open_date", "close_date", "index", "trade_duration",
|
||||
"open_rate", "close_rate", "open_at_end", "sell_reason"]
|
||||
# Old format - maybe remove?
|
||||
BT_DATA_COLUMNS_OLD = ["pair", "profit_percent", "open_date", "close_date", "index",
|
||||
"trade_duration", "open_rate", "close_rate", "open_at_end", "sell_reason"]
|
||||
|
||||
# Mid-term format, crated by BacktestResult Named Tuple
|
||||
BT_DATA_COLUMNS_MID = ['pair', 'profit_percent', 'open_date', 'close_date', 'trade_duration',
|
||||
'open_rate', 'close_rate', 'open_at_end', 'sell_reason', 'fee_open',
|
||||
'fee_close', 'amount', 'profit_abs', 'profit_ratio']
|
||||
|
||||
# Newest format
|
||||
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date',
|
||||
'fee_open', 'fee_close', 'trade_duration',
|
||||
'profit_ratio', 'profit_abs', 'sell_reason',
|
||||
'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs',
|
||||
'stop_loss_ratio', 'min_rate', 'max_rate', 'is_open', ]
|
||||
|
||||
|
||||
def get_latest_optimize_filename(directory: Union[Path, str], variant: str) -> str:
|
||||
@ -154,7 +165,7 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
|
||||
)
|
||||
else:
|
||||
# old format - only with lists.
|
||||
df = pd.DataFrame(data, columns=BT_DATA_COLUMNS)
|
||||
df = pd.DataFrame(data, columns=BT_DATA_COLUMNS_OLD)
|
||||
|
||||
df['open_date'] = pd.to_datetime(df['open_date'],
|
||||
unit='s',
|
||||
@ -166,7 +177,10 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
# Create compatibility with new format
|
||||
df['profit_abs'] = df['close_rate'] - df['open_rate']
|
||||
if 'profit_ratio' not in df.columns:
|
||||
df['profit_ratio'] = df['profit_percent']
|
||||
df = df.sort_values("open_date").reset_index(drop=True)
|
||||
return df
|
||||
|
||||
@ -209,6 +223,19 @@ def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
|
||||
return df_final[df_final['open_trades'] > max_open_trades]
|
||||
|
||||
|
||||
def trade_list_to_dataframe(trades: List[Trade]) -> pd.DataFrame:
|
||||
"""
|
||||
Convert list of Trade objects to pandas Dataframe
|
||||
:param trades: List of trade objects
|
||||
:return: Dataframe with BT_DATA_COLUMNS
|
||||
"""
|
||||
df = pd.DataFrame.from_records([t.to_json() for t in trades], columns=BT_DATA_COLUMNS)
|
||||
if len(df) > 0:
|
||||
df.loc[:, 'close_date'] = pd.to_datetime(df['close_date'], utc=True)
|
||||
df.loc[:, 'open_date'] = pd.to_datetime(df['open_date'], utc=True)
|
||||
return df
|
||||
|
||||
|
||||
def load_trades_from_db(db_url: str, strategy: Optional[str] = None) -> pd.DataFrame:
|
||||
"""
|
||||
Load trades from a DB (using dburl)
|
||||
@ -219,36 +246,10 @@ def load_trades_from_db(db_url: str, strategy: Optional[str] = None) -> pd.DataF
|
||||
"""
|
||||
init_db(db_url, clean_open_orders=False)
|
||||
|
||||
columns = ["pair", "open_date", "close_date", "profit", "profit_percent",
|
||||
"open_rate", "close_rate", "amount", "trade_duration", "sell_reason",
|
||||
"fee_open", "fee_close", "open_rate_requested", "close_rate_requested",
|
||||
"stake_amount", "max_rate", "min_rate", "id", "exchange",
|
||||
"stop_loss", "initial_stop_loss", "strategy", "timeframe"]
|
||||
|
||||
filters = []
|
||||
if strategy:
|
||||
filters.append(Trade.strategy == strategy)
|
||||
|
||||
trades = pd.DataFrame([(t.pair,
|
||||
t.open_date.replace(tzinfo=timezone.utc),
|
||||
t.close_date.replace(tzinfo=timezone.utc) if t.close_date else None,
|
||||
t.calc_profit(), t.calc_profit_ratio(),
|
||||
t.open_rate, t.close_rate, t.amount,
|
||||
(round((t.close_date.timestamp() - t.open_date.timestamp()) / 60, 2)
|
||||
if t.close_date else None),
|
||||
t.sell_reason,
|
||||
t.fee_open, t.fee_close,
|
||||
t.open_rate_requested,
|
||||
t.close_rate_requested,
|
||||
t.stake_amount,
|
||||
t.max_rate,
|
||||
t.min_rate,
|
||||
t.id, t.exchange,
|
||||
t.stop_loss, t.initial_stop_loss,
|
||||
t.strategy, t.timeframe
|
||||
)
|
||||
for t in Trade.get_trades(filters).all()],
|
||||
columns=columns)
|
||||
trades = trade_list_to_dataframe(Trade.get_trades(filters).all())
|
||||
|
||||
return trades
|
||||
|
||||
|
@ -3,7 +3,7 @@
|
||||
"""
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
from freqtrade.data.btanalysis import BT_DATA_COLUMNS
|
||||
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, trade_list_to_dataframe
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from copy import deepcopy
|
||||
@ -385,11 +385,7 @@ class Backtesting:
|
||||
|
||||
trades += self.handle_left_open(open_trades, data=data)
|
||||
|
||||
df = DataFrame.from_records([t.to_json() for t in trades], columns=BT_DATA_COLUMNS)
|
||||
if len(df) > 0:
|
||||
df.loc[:, 'close_date'] = to_datetime(df['close_date'], utc=True)
|
||||
df.loc[:, 'open_date'] = to_datetime(df['open_date'], utc=True)
|
||||
return df
|
||||
return trade_list_to_dataframe(trades)
|
||||
|
||||
def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, Any], timerange: TimeRange):
|
||||
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
|
||||
|
@ -7,14 +7,14 @@ from pandas import DataFrame, DateOffset, Timestamp, to_datetime
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import LAST_BT_RESULT_FN
|
||||
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS, analyze_trade_parallelism,
|
||||
calculate_market_change, calculate_max_drawdown,
|
||||
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS, BT_DATA_COLUMNS_MID, BT_DATA_COLUMNS_OLD,
|
||||
analyze_trade_parallelism, calculate_market_change,
|
||||
calculate_max_drawdown,
|
||||
combine_dataframes_with_mean, create_cum_profit,
|
||||
extract_trades_of_period, get_latest_backtest_filename,
|
||||
get_latest_hyperopt_file, load_backtest_data, load_trades,
|
||||
load_trades_from_db)
|
||||
from freqtrade.data.history import load_data, load_pair_history
|
||||
from freqtrade.optimize.backtesting import BacktestResult
|
||||
from tests.conftest import create_mock_trades
|
||||
from tests.conftest_trades import MOCK_TRADE_COUNT
|
||||
|
||||
@ -55,7 +55,7 @@ def test_load_backtest_data_old_format(testdatadir):
|
||||
filename = testdatadir / "backtest-result_test.json"
|
||||
bt_data = load_backtest_data(filename)
|
||||
assert isinstance(bt_data, DataFrame)
|
||||
assert list(bt_data.columns) == BT_DATA_COLUMNS + ["profit_abs"]
|
||||
assert list(bt_data.columns) == BT_DATA_COLUMNS_OLD + ['profit_abs', 'profit_ratio']
|
||||
assert len(bt_data) == 179
|
||||
|
||||
# Test loading from string (must yield same result)
|
||||
@ -71,7 +71,7 @@ def test_load_backtest_data_new_format(testdatadir):
|
||||
filename = testdatadir / "backtest-result_new.json"
|
||||
bt_data = load_backtest_data(filename)
|
||||
assert isinstance(bt_data, DataFrame)
|
||||
assert set(bt_data.columns) == set(list(BacktestResult._fields) + ["profit_abs"])
|
||||
assert set(bt_data.columns) == set(BT_DATA_COLUMNS_MID)
|
||||
assert len(bt_data) == 179
|
||||
|
||||
# Test loading from string (must yield same result)
|
||||
@ -95,7 +95,7 @@ def test_load_backtest_data_multi(testdatadir):
|
||||
for strategy in ('DefaultStrategy', 'TestStrategy'):
|
||||
bt_data = load_backtest_data(filename, strategy=strategy)
|
||||
assert isinstance(bt_data, DataFrame)
|
||||
assert set(bt_data.columns) == set(list(BacktestResult._fields) + ["profit_abs"])
|
||||
assert set(bt_data.columns) == set(BT_DATA_COLUMNS_MID)
|
||||
assert len(bt_data) == 179
|
||||
|
||||
# Test loading from string (must yield same result)
|
||||
@ -122,7 +122,7 @@ def test_load_trades_from_db(default_conf, fee, mocker):
|
||||
assert isinstance(trades, DataFrame)
|
||||
assert "pair" in trades.columns
|
||||
assert "open_date" in trades.columns
|
||||
assert "profit_percent" in trades.columns
|
||||
assert "profit_ratio" in trades.columns
|
||||
|
||||
for col in BT_DATA_COLUMNS:
|
||||
if col not in ['index', 'open_at_end']:
|
||||
|
Loading…
Reference in New Issue
Block a user