Added both SortinoHyperOptLoss and SortinoHyperOptLossDaily
This commit is contained in:
parent
44d67389d2
commit
deb0b7ad67
@ -16,7 +16,7 @@ class SortinoHyperOptLoss(IHyperOptLoss):
|
|||||||
"""
|
"""
|
||||||
Defines the loss function for hyperopt.
|
Defines the loss function for hyperopt.
|
||||||
|
|
||||||
This implementation uses the Sharpe Ratio calculation.
|
This implementation uses the Sortino Ratio calculation.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@ -26,7 +26,7 @@ class SortinoHyperOptLoss(IHyperOptLoss):
|
|||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for more optimal results.
|
Objective function, returns smaller number for more optimal results.
|
||||||
|
|
||||||
Uses Sharpe Ratio calculation.
|
Uses Sortino Ratio calculation.
|
||||||
"""
|
"""
|
||||||
total_profit = results["profit_percent"]
|
total_profit = results["profit_percent"]
|
||||||
days_period = (max_date - min_date).days
|
days_period = (max_date - min_date).days
|
||||||
@ -42,7 +42,7 @@ class SortinoHyperOptLoss(IHyperOptLoss):
|
|||||||
if np.std(total_profit) != 0.0:
|
if np.std(total_profit) != 0.0:
|
||||||
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
|
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
|
||||||
else:
|
else:
|
||||||
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
|
||||||
sortino_ratio = -20.
|
sortino_ratio = -20.
|
||||||
|
|
||||||
# print(expected_returns_mean, down_stdev, sortino_ratio)
|
# print(expected_returns_mean, down_stdev, sortino_ratio)
|
||||||
|
64
freqtrade/optimize/hyperopt_loss_sortino_daily.py
Normal file
64
freqtrade/optimize/hyperopt_loss_sortino_daily.py
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
"""
|
||||||
|
SortinoHyperOptLossDaily
|
||||||
|
|
||||||
|
This module defines the alternative HyperOptLoss class which can be used for
|
||||||
|
Hyperoptimization.
|
||||||
|
"""
|
||||||
|
import math
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
from pandas import DataFrame, date_range
|
||||||
|
|
||||||
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
|
class SortinoHyperOptLossDaily(IHyperOptLoss):
|
||||||
|
"""
|
||||||
|
Defines the loss function for hyperopt.
|
||||||
|
|
||||||
|
This implementation uses the Sortino Ratio calculation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
|
min_date: datetime, max_date: datetime,
|
||||||
|
*args, **kwargs) -> float:
|
||||||
|
"""
|
||||||
|
Objective function, returns smaller number for more optimal results.
|
||||||
|
|
||||||
|
Uses Sortino Ratio calculation.
|
||||||
|
"""
|
||||||
|
resample_freq = '1D'
|
||||||
|
slippage_per_trade_ratio = 0.0005
|
||||||
|
days_in_year = 365
|
||||||
|
annual_risk_free_rate = 0.0
|
||||||
|
risk_free_rate = annual_risk_free_rate / days_in_year
|
||||||
|
|
||||||
|
# apply slippage per trade to profit_percent
|
||||||
|
results.loc[:, 'profit_percent_after_slippage'] = \
|
||||||
|
results['profit_percent'] - slippage_per_trade_ratio
|
||||||
|
|
||||||
|
# create the index within the min_date and end max_date
|
||||||
|
t_index = date_range(start=min_date, end=max_date, freq=resample_freq)
|
||||||
|
|
||||||
|
sum_daily = (
|
||||||
|
results.resample(resample_freq, on='close_time').agg(
|
||||||
|
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
|
||||||
|
)
|
||||||
|
|
||||||
|
total_profit = sum_daily["profit_percent_after_slippage"] - risk_free_rate
|
||||||
|
expected_returns_mean = total_profit.mean()
|
||||||
|
|
||||||
|
results['downside_returns'] = 0
|
||||||
|
results.loc[total_profit < 0, 'downside_returns'] = results['profit_percent']
|
||||||
|
down_stdev = results['downside_returns'].std()
|
||||||
|
|
||||||
|
if (down_stdev != 0.):
|
||||||
|
sortino_ratio = expected_returns_mean / down_stdev * math.sqrt(days_in_year)
|
||||||
|
else:
|
||||||
|
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
|
||||||
|
sortino_ratio = -20.
|
||||||
|
|
||||||
|
# print(t_index, sum_daily, total_profit)
|
||||||
|
# print(risk_free_rate, expected_returns_mean, down_stdev, sortino_ratio)
|
||||||
|
return -sortino_ratio
|
Loading…
Reference in New Issue
Block a user