Added both SortinoHyperOptLoss and SortinoHyperOptLossDaily

This commit is contained in:
Yazeed Al Oyoun 2020-02-07 01:18:15 +01:00 committed by hroff-1902
parent 44d67389d2
commit deb0b7ad67
2 changed files with 67 additions and 3 deletions

View File

@ -16,7 +16,7 @@ class SortinoHyperOptLoss(IHyperOptLoss):
""" """
Defines the loss function for hyperopt. Defines the loss function for hyperopt.
This implementation uses the Sharpe Ratio calculation. This implementation uses the Sortino Ratio calculation.
""" """
@staticmethod @staticmethod
@ -26,7 +26,7 @@ class SortinoHyperOptLoss(IHyperOptLoss):
""" """
Objective function, returns smaller number for more optimal results. Objective function, returns smaller number for more optimal results.
Uses Sharpe Ratio calculation. Uses Sortino Ratio calculation.
""" """
total_profit = results["profit_percent"] total_profit = results["profit_percent"]
days_period = (max_date - min_date).days days_period = (max_date - min_date).days
@ -42,7 +42,7 @@ class SortinoHyperOptLoss(IHyperOptLoss):
if np.std(total_profit) != 0.0: if np.std(total_profit) != 0.0:
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365) sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
else: else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal. # Define high (negative) sortino ratio to be clear that this is NOT optimal.
sortino_ratio = -20. sortino_ratio = -20.
# print(expected_returns_mean, down_stdev, sortino_ratio) # print(expected_returns_mean, down_stdev, sortino_ratio)

View File

@ -0,0 +1,64 @@
"""
SortinoHyperOptLossDaily
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
import math
from datetime import datetime
from pandas import DataFrame, date_range
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SortinoHyperOptLossDaily(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sortino Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sortino Ratio calculation.
"""
resample_freq = '1D'
slippage_per_trade_ratio = 0.0005
days_in_year = 365
annual_risk_free_rate = 0.0
risk_free_rate = annual_risk_free_rate / days_in_year
# apply slippage per trade to profit_percent
results.loc[:, 'profit_percent_after_slippage'] = \
results['profit_percent'] - slippage_per_trade_ratio
# create the index within the min_date and end max_date
t_index = date_range(start=min_date, end=max_date, freq=resample_freq)
sum_daily = (
results.resample(resample_freq, on='close_time').agg(
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_percent_after_slippage"] - risk_free_rate
expected_returns_mean = total_profit.mean()
results['downside_returns'] = 0
results.loc[total_profit < 0, 'downside_returns'] = results['profit_percent']
down_stdev = results['downside_returns'].std()
if (down_stdev != 0.):
sortino_ratio = expected_returns_mean / down_stdev * math.sqrt(days_in_year)
else:
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
sortino_ratio = -20.
# print(t_index, sum_daily, total_profit)
# print(risk_free_rate, expected_returns_mean, down_stdev, sortino_ratio)
return -sortino_ratio