expose full parameter set for SVM outlier detection. Set default shuffle to false to improve reproducibility
This commit is contained in:
@@ -530,8 +530,9 @@ class FreqaiDataKitchen:
|
||||
|
||||
else:
|
||||
# use SGDOneClassSVM to increase speed?
|
||||
nu = self.freqai_config["feature_parameters"].get("svm_nu", 0.2)
|
||||
self.svm_model = linear_model.SGDOneClassSVM(nu=nu).fit(
|
||||
svm_params = self.freqai_config["feature_parameters"].get(
|
||||
"svm_params", {"shuffle": False, "nu": 0.1})
|
||||
self.svm_model = linear_model.SGDOneClassSVM(**svm_params).fit(
|
||||
self.data_dictionary["train_features"]
|
||||
)
|
||||
y_pred = self.svm_model.predict(self.data_dictionary["train_features"])
|
||||
|
Reference in New Issue
Block a user