diff --git a/docs/data-analysis.md b/docs/data-analysis.md index 2e2ebc3c6..5db9e6c3b 100644 --- a/docs/data-analysis.md +++ b/docs/data-analysis.md @@ -9,6 +9,7 @@ You can analyze the results of backtests and trading history easily using Jupyte ### Load backtest results into a pandas dataframe ```python +from freqtrade.data.btanalysis import load_backtest_data # Load backtest results df = load_backtest_data("user_data/backtest_data/backtest-result.json") @@ -19,6 +20,8 @@ df.groupby("pair")["sell_reason"].value_counts() ### Load live trading results into a pandas dataframe ``` python +from freqtrade.data.btanalysis import load_trades_from_db + # Fetch trades from database df = load_trades_from_db("sqlite:///tradesv3.sqlite") @@ -38,13 +41,11 @@ from pathlib import Path import os from freqtrade.data.history import load_pair_history from freqtrade.resolvers import StrategyResolver -from freqtrade.data.btanalysis import load_backtest_data -from freqtrade.data.btanalysis import load_trades_from_db # Define some constants -ticker_interval = "1m" +ticker_interval = "5m" # Name of the strategy class -strategy_name = 'NewStrategy' +strategy_name = 'AwesomeStrategy' # Path to user data user_data_dir = 'user_data' # Location of the strategy diff --git a/user_data/notebooks/analysis_example.ipynb b/user_data/notebooks/analysis_example.ipynb index 30e9e1a97..f5e2c12d7 100644 --- a/user_data/notebooks/analysis_example.ipynb +++ b/user_data/notebooks/analysis_example.ipynb @@ -116,7 +116,7 @@ "# Define some constants\n", "ticker_interval = \"5m\"\n", "# Name of the strategy class\n", - "strategy_name = 'NewStrategy'\n", + "strategy_name = 'AwesomeStrategy'\n", "# Path to user data\n", "user_data_dir = 'user_data'\n", "# Location of the strategy\n",