rollback to the original add noise
This commit is contained in:
		| @@ -884,25 +884,11 @@ class FreqaiDataKitchen: | |||||||
|         """ |         """ | ||||||
|         Add noise to train features to reduce the risk of overfitting. |         Add noise to train features to reduce the risk of overfitting. | ||||||
|         """ |         """ | ||||||
|         da = self.freqai_config["feature_parameters"]["data_augment"] |         mu = 0  # no shift | ||||||
|         X = self.data_dictionary['train_features'] |         sigma = self.freqai_config["feature_parameters"]["noise_standard_deviation"] | ||||||
|         y = self.data_dictionary['train_labels'] |         compute_df = self.data_dictionary['train_features'] | ||||||
|         da_type = da.get("type", "std") |         noise = np.random.normal(mu, sigma, [compute_df.shape[0], compute_df.shape[1]]) | ||||||
|         if da_type == "std": |         self.data_dictionary['train_features'] += noise | ||||||
|             # generate alpha values of 0-mean and 1-std |  | ||||||
|             alpha = np.random.randn(*X.shape) |  | ||||||
|             scale = da.get("vaue", 0.01) |  | ||||||
|             Xaugmented = X +  alpha * scale * X.std(0)[None, :] |  | ||||||
|             X = np.vstack((X, Xaugmented)) |  | ||||||
|             y = y.append(y) |  | ||||||
|             self.data_dictionary['train_features'] = X |  | ||||||
|             self.data_dictionary['train_labels'] = y |  | ||||||
|         elif da_type == "constant": |  | ||||||
|             mu = 0  # no shift |  | ||||||
|             sigma = self.freqai_config["feature_parameters"]["data_augment"]["value"] |  | ||||||
|             compute_df = self.data_dictionary['train_features'] |  | ||||||
|             noise = np.random.normal(mu, sigma, [compute_df.shape[0], compute_df.shape[1]]) |  | ||||||
|             self.data_dictionary['train_features'] += noise |  | ||||||
|         return |         return | ||||||
|  |  | ||||||
|     def find_features(self, dataframe: DataFrame) -> None: |     def find_features(self, dataframe: DataFrame) -> None: | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user