Merge branch 'develop' into margin-db
This commit is contained in:
@@ -11,6 +11,7 @@ from freqtrade import constants
|
||||
from freqtrade.configuration.check_exchange import check_exchange
|
||||
from freqtrade.configuration.deprecated_settings import process_temporary_deprecated_settings
|
||||
from freqtrade.configuration.directory_operations import create_datadir, create_userdata_dir
|
||||
from freqtrade.configuration.environment_vars import enironment_vars_to_dict
|
||||
from freqtrade.configuration.load_config import load_config_file, load_file
|
||||
from freqtrade.enums import NON_UTIL_MODES, TRADING_MODES, RunMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
@@ -71,6 +72,11 @@ class Configuration:
|
||||
|
||||
# Merge config options, overwriting old values
|
||||
config = deep_merge_dicts(load_config_file(path), config)
|
||||
|
||||
# Load environment variables
|
||||
env_data = enironment_vars_to_dict()
|
||||
config = deep_merge_dicts(env_data, config)
|
||||
|
||||
config['config_files'] = files
|
||||
# Normalize config
|
||||
if 'internals' not in config:
|
||||
|
54
freqtrade/configuration/environment_vars.py
Normal file
54
freqtrade/configuration/environment_vars.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import logging
|
||||
import os
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.constants import ENV_VAR_PREFIX
|
||||
from freqtrade.misc import deep_merge_dicts
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_var_typed(val):
|
||||
try:
|
||||
return int(val)
|
||||
except ValueError:
|
||||
try:
|
||||
return float(val)
|
||||
except ValueError:
|
||||
if val.lower() in ('t', 'true'):
|
||||
return True
|
||||
elif val.lower() in ('f', 'false'):
|
||||
return False
|
||||
# keep as string
|
||||
return val
|
||||
|
||||
|
||||
def flat_vars_to_nested_dict(env_dict: Dict[str, Any], prefix: str) -> Dict[str, Any]:
|
||||
"""
|
||||
Environment variables must be prefixed with FREQTRADE.
|
||||
FREQTRADE__{section}__{key}
|
||||
:param env_dict: Dictionary to validate - usually os.environ
|
||||
:param prefix: Prefix to consider (usually FREQTRADE__)
|
||||
:return: Nested dict based on available and relevant variables.
|
||||
"""
|
||||
relevant_vars: Dict[str, Any] = {}
|
||||
|
||||
for env_var, val in sorted(env_dict.items()):
|
||||
if env_var.startswith(prefix):
|
||||
logger.info(f"Loading variable '{env_var}'")
|
||||
key = env_var.replace(prefix, '')
|
||||
for k in reversed(key.split('__')):
|
||||
val = {k.lower(): get_var_typed(val) if type(val) != dict else val}
|
||||
relevant_vars = deep_merge_dicts(val, relevant_vars)
|
||||
|
||||
return relevant_vars
|
||||
|
||||
|
||||
def enironment_vars_to_dict() -> Dict[str, Any]:
|
||||
"""
|
||||
Read environment variables and return a nested dict for relevant variables
|
||||
Relevant variables must follow the FREQTRADE__{section}__{key} pattern
|
||||
:return: Nested dict based on available and relevant variables.
|
||||
"""
|
||||
return flat_vars_to_nested_dict(os.environ.copy(), ENV_VAR_PREFIX)
|
@@ -47,6 +47,7 @@ USERPATH_STRATEGIES = 'strategies'
|
||||
USERPATH_NOTEBOOKS = 'notebooks'
|
||||
|
||||
TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent']
|
||||
ENV_VAR_PREFIX = 'FREQTRADE__'
|
||||
|
||||
|
||||
# Define decimals per coin for outputs
|
||||
|
@@ -30,7 +30,7 @@ BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date',
|
||||
'fee_open', 'fee_close', 'trade_duration',
|
||||
'profit_ratio', 'profit_abs', 'sell_reason',
|
||||
'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs',
|
||||
'stop_loss_ratio', 'min_rate', 'max_rate', 'is_open', ]
|
||||
'stop_loss_ratio', 'min_rate', 'max_rate', 'is_open', 'buy_tag']
|
||||
|
||||
|
||||
def get_latest_optimize_filename(directory: Union[Path, str], variant: str) -> str:
|
||||
|
@@ -10,11 +10,12 @@ from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import ListPairsWithTimeframes, PairWithTimeframe
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.exceptions import ExchangeError, OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange import Exchange, timeframe_to_seconds
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -31,6 +32,7 @@ class DataProvider:
|
||||
self._pairlists = pairlists
|
||||
self.__cached_pairs: Dict[PairWithTimeframe, Tuple[DataFrame, datetime]] = {}
|
||||
self.__slice_index: Optional[int] = None
|
||||
self.__cached_pairs_backtesting: Dict[PairWithTimeframe, DataFrame] = {}
|
||||
|
||||
def _set_dataframe_max_index(self, limit_index: int):
|
||||
"""
|
||||
@@ -62,11 +64,22 @@ class DataProvider:
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: timeframe to get data for
|
||||
"""
|
||||
return load_pair_history(pair=pair,
|
||||
timeframe=timeframe or self._config['timeframe'],
|
||||
datadir=self._config['datadir'],
|
||||
data_format=self._config.get('dataformat_ohlcv', 'json')
|
||||
)
|
||||
saved_pair = (pair, str(timeframe))
|
||||
if saved_pair not in self.__cached_pairs_backtesting:
|
||||
timerange = TimeRange.parse_timerange(None if self._config.get(
|
||||
'timerange') is None else str(self._config.get('timerange')))
|
||||
# Move informative start time respecting startup_candle_count
|
||||
timerange.subtract_start(
|
||||
timeframe_to_seconds(str(timeframe)) * self._config.get('startup_candle_count', 0)
|
||||
)
|
||||
self.__cached_pairs_backtesting[saved_pair] = load_pair_history(
|
||||
pair=pair,
|
||||
timeframe=timeframe or self._config['timeframe'],
|
||||
datadir=self._config['datadir'],
|
||||
timerange=timerange,
|
||||
data_format=self._config.get('dataformat_ohlcv', 'json')
|
||||
)
|
||||
return self.__cached_pairs_backtesting[saved_pair].copy()
|
||||
|
||||
def get_pair_dataframe(self, pair: str, timeframe: str = None) -> DataFrame:
|
||||
"""
|
||||
|
@@ -62,7 +62,7 @@ class JsonDataHandler(IDataHandler):
|
||||
filename = self._pair_data_filename(self._datadir, pair, timeframe)
|
||||
_data = data.copy()
|
||||
# Convert date to int
|
||||
_data['date'] = _data['date'].astype(np.int64) // 1000 // 1000
|
||||
_data['date'] = _data['date'].view(np.int64) // 1000 // 1000
|
||||
|
||||
# Reset index, select only appropriate columns and save as json
|
||||
_data.reset_index(drop=True).loc[:, self._columns].to_json(
|
||||
|
@@ -4,5 +4,5 @@ from freqtrade.enums.interestmode import InterestMode
|
||||
from freqtrade.enums.rpcmessagetype import RPCMessageType
|
||||
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
|
||||
from freqtrade.enums.selltype import SellType
|
||||
from freqtrade.enums.signaltype import SignalType
|
||||
from freqtrade.enums.signaltype import SignalTagType, SignalType
|
||||
from freqtrade.enums.state import State
|
||||
|
@@ -7,3 +7,10 @@ class SignalType(Enum):
|
||||
"""
|
||||
BUY = "buy"
|
||||
SELL = "sell"
|
||||
|
||||
|
||||
class SignalTagType(Enum):
|
||||
"""
|
||||
Enum for signal columns
|
||||
"""
|
||||
BUY_TAG = "buy_tag"
|
||||
|
@@ -387,7 +387,7 @@ class Exchange:
|
||||
# its contents depend on the exchange.
|
||||
# It can also be a string or similar ... so we need to verify that first.
|
||||
elif (isinstance(self.markets[pair].get('info', None), dict)
|
||||
and self.markets[pair].get('info', {}).get('IsRestricted', False)):
|
||||
and self.markets[pair].get('info', {}).get('prohibitedIn', False)):
|
||||
# Warn users about restricted pairs in whitelist.
|
||||
# We cannot determine reliably if Users are affected.
|
||||
logger.warning(f"Pair {pair} is restricted for some users on this exchange."
|
||||
@@ -689,7 +689,16 @@ class Exchange:
|
||||
# Order handling
|
||||
|
||||
def create_order(self, pair: str, ordertype: str, side: str, amount: float,
|
||||
rate: float, params: Dict = {}) -> Dict:
|
||||
rate: float, time_in_force: str = 'gtc') -> Dict:
|
||||
|
||||
if self._config['dry_run']:
|
||||
dry_order = self.create_dry_run_order(pair, ordertype, side, amount, rate)
|
||||
return dry_order
|
||||
|
||||
params = self._params.copy()
|
||||
if time_in_force != 'gtc' and ordertype != 'market':
|
||||
params.update({'timeInForce': time_in_force})
|
||||
|
||||
try:
|
||||
# Set the precision for amount and price(rate) as accepted by the exchange
|
||||
amount = self.amount_to_precision(pair, amount)
|
||||
@@ -720,32 +729,6 @@ class Exchange:
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
def buy(self, pair: str, ordertype: str, amount: float,
|
||||
rate: float, time_in_force: str) -> Dict:
|
||||
|
||||
if self._config['dry_run']:
|
||||
dry_order = self.create_dry_run_order(pair, ordertype, "buy", amount, rate)
|
||||
return dry_order
|
||||
|
||||
params = self._params.copy()
|
||||
if time_in_force != 'gtc' and ordertype != 'market':
|
||||
params.update({'timeInForce': time_in_force})
|
||||
|
||||
return self.create_order(pair, ordertype, 'buy', amount, rate, params)
|
||||
|
||||
def sell(self, pair: str, ordertype: str, amount: float,
|
||||
rate: float, time_in_force: str = 'gtc') -> Dict:
|
||||
|
||||
if self._config['dry_run']:
|
||||
dry_order = self.create_dry_run_order(pair, ordertype, "sell", amount, rate)
|
||||
return dry_order
|
||||
|
||||
params = self._params.copy()
|
||||
if time_in_force != 'gtc' and ordertype != 'market':
|
||||
params.update({'timeInForce': time_in_force})
|
||||
|
||||
return self.create_order(pair, ordertype, 'sell', amount, rate, params)
|
||||
|
||||
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
|
||||
"""
|
||||
Verify stop_loss against stoploss-order value (limit or price)
|
||||
|
@@ -420,20 +420,24 @@ class FreqtradeBot(LoggingMixin):
|
||||
return False
|
||||
|
||||
# running get_signal on historical data fetched
|
||||
(buy, sell) = self.strategy.get_signal(pair, self.strategy.timeframe, analyzed_df)
|
||||
(buy, sell, buy_tag) = self.strategy.get_signal(
|
||||
pair,
|
||||
self.strategy.timeframe,
|
||||
analyzed_df
|
||||
)
|
||||
|
||||
if buy and not sell:
|
||||
stake_amount = self.wallets.get_trade_stake_amount(pair, self.edge)
|
||||
|
||||
bid_check_dom = self.config.get('bid_strategy', {}).get('check_depth_of_market', {})
|
||||
if ((bid_check_dom.get('enabled', False)) and
|
||||
(bid_check_dom.get('bids_to_ask_delta', 0) > 0)):
|
||||
(bid_check_dom.get('bids_to_ask_delta', 0) > 0)):
|
||||
if self._check_depth_of_market_buy(pair, bid_check_dom):
|
||||
return self.execute_buy(pair, stake_amount)
|
||||
return self.execute_buy(pair, stake_amount, buy_tag=buy_tag)
|
||||
else:
|
||||
return False
|
||||
|
||||
return self.execute_buy(pair, stake_amount)
|
||||
return self.execute_buy(pair, stake_amount, buy_tag=buy_tag)
|
||||
else:
|
||||
return False
|
||||
|
||||
@@ -462,7 +466,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
return False
|
||||
|
||||
def execute_buy(self, pair: str, stake_amount: float, price: Optional[float] = None,
|
||||
forcebuy: bool = False) -> bool:
|
||||
forcebuy: bool = False, buy_tag: Optional[str] = None) -> bool:
|
||||
"""
|
||||
Executes a limit buy for the given pair
|
||||
:param pair: pair for which we want to create a LIMIT_BUY
|
||||
@@ -510,9 +514,9 @@ class FreqtradeBot(LoggingMixin):
|
||||
logger.info(f"User requested abortion of buying {pair}")
|
||||
return False
|
||||
amount = self.exchange.amount_to_precision(pair, amount)
|
||||
order = self.exchange.buy(pair=pair, ordertype=order_type,
|
||||
amount=amount, rate=buy_limit_requested,
|
||||
time_in_force=time_in_force)
|
||||
order = self.exchange.create_order(pair=pair, ordertype=order_type, side="buy",
|
||||
amount=amount, rate=buy_limit_requested,
|
||||
time_in_force=time_in_force)
|
||||
order_obj = Order.parse_from_ccxt_object(order, pair, 'buy')
|
||||
order_id = order['id']
|
||||
order_status = order.get('status', None)
|
||||
@@ -565,6 +569,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
exchange=self.exchange.id,
|
||||
open_order_id=order_id,
|
||||
strategy=self.strategy.get_strategy_name(),
|
||||
buy_tag=buy_tag,
|
||||
timeframe=timeframe_to_minutes(self.config['timeframe'])
|
||||
)
|
||||
trade.orders.append(order_obj)
|
||||
@@ -590,6 +595,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
msg = {
|
||||
'trade_id': trade.id,
|
||||
'type': RPCMessageType.BUY,
|
||||
'buy_tag': trade.buy_tag,
|
||||
'exchange': self.exchange.name.capitalize(),
|
||||
'pair': trade.pair,
|
||||
'limit': trade.open_rate,
|
||||
@@ -614,6 +620,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
msg = {
|
||||
'trade_id': trade.id,
|
||||
'type': RPCMessageType.BUY_CANCEL,
|
||||
'buy_tag': trade.buy_tag,
|
||||
'exchange': self.exchange.name.capitalize(),
|
||||
'pair': trade.pair,
|
||||
'limit': trade.open_rate,
|
||||
@@ -634,6 +641,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
msg = {
|
||||
'trade_id': trade.id,
|
||||
'type': RPCMessageType.BUY_FILL,
|
||||
'buy_tag': trade.buy_tag,
|
||||
'exchange': self.exchange.name.capitalize(),
|
||||
'pair': trade.pair,
|
||||
'open_rate': trade.open_rate,
|
||||
@@ -692,7 +700,11 @@ class FreqtradeBot(LoggingMixin):
|
||||
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(trade.pair,
|
||||
self.strategy.timeframe)
|
||||
|
||||
(buy, sell) = self.strategy.get_signal(trade.pair, self.strategy.timeframe, analyzed_df)
|
||||
(buy, sell, _) = self.strategy.get_signal(
|
||||
trade.pair,
|
||||
self.strategy.timeframe,
|
||||
analyzed_df
|
||||
)
|
||||
|
||||
logger.debug('checking sell')
|
||||
sell_rate = self.exchange.get_rate(trade.pair, refresh=True, side="sell")
|
||||
@@ -1094,11 +1106,11 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
try:
|
||||
# Execute sell and update trade record
|
||||
order = self.exchange.sell(pair=trade.pair,
|
||||
ordertype=order_type,
|
||||
amount=amount, rate=limit,
|
||||
time_in_force=time_in_force
|
||||
)
|
||||
order = self.exchange.create_order(pair=trade.pair,
|
||||
ordertype=order_type, side="sell",
|
||||
amount=amount, rate=limit,
|
||||
time_in_force=time_in_force
|
||||
)
|
||||
except InsufficientFundsError as e:
|
||||
logger.warning(f"Unable to place order {e}.")
|
||||
# Try to figure out what went wrong
|
||||
|
@@ -15,7 +15,7 @@ from freqtrade.configuration import TimeRange, remove_credentials, validate_conf
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.data import history
|
||||
from freqtrade.data.btanalysis import trade_list_to_dataframe
|
||||
from freqtrade.data.converter import trim_dataframes
|
||||
from freqtrade.data.converter import trim_dataframe, trim_dataframes
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import BacktestState, SellType
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
@@ -43,6 +43,7 @@ CLOSE_IDX = 3
|
||||
SELL_IDX = 4
|
||||
LOW_IDX = 5
|
||||
HIGH_IDX = 6
|
||||
BUY_TAG_IDX = 7
|
||||
|
||||
|
||||
class Backtesting:
|
||||
@@ -116,8 +117,13 @@ class Backtesting:
|
||||
|
||||
self.wallets = Wallets(self.config, self.exchange, log=False)
|
||||
|
||||
self.timerange = TimeRange.parse_timerange(
|
||||
None if self.config.get('timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
# Get maximum required startup period
|
||||
self.required_startup = max([strat.startup_candle_count for strat in self.strategylist])
|
||||
# Add maximum startup candle count to configuration for informative pairs support
|
||||
self.config['startup_candle_count'] = self.required_startup
|
||||
self.exchange.validate_required_startup_candles(self.required_startup, self.timeframe)
|
||||
|
||||
self.progress = BTProgress()
|
||||
@@ -154,14 +160,11 @@ class Backtesting:
|
||||
"""
|
||||
self.progress.init_step(BacktestState.DATALOAD, 1)
|
||||
|
||||
timerange = TimeRange.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
data = history.load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=self.pairlists.whitelist,
|
||||
timeframe=self.timeframe,
|
||||
timerange=timerange,
|
||||
timerange=self.timerange,
|
||||
startup_candles=self.required_startup,
|
||||
fail_without_data=True,
|
||||
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||
@@ -174,11 +177,11 @@ class Backtesting:
|
||||
f'({(max_date - min_date).days} days).')
|
||||
|
||||
# Adjust startts forward if not enough data is available
|
||||
timerange.adjust_start_if_necessary(timeframe_to_seconds(self.timeframe),
|
||||
self.required_startup, min_date)
|
||||
self.timerange.adjust_start_if_necessary(timeframe_to_seconds(self.timeframe),
|
||||
self.required_startup, min_date)
|
||||
|
||||
self.progress.set_new_value(1)
|
||||
return data, timerange
|
||||
return data, self.timerange
|
||||
|
||||
def prepare_backtest(self, enable_protections):
|
||||
"""
|
||||
@@ -217,23 +220,34 @@ class Backtesting:
|
||||
for pair, pair_data in processed.items():
|
||||
self.check_abort()
|
||||
self.progress.increment()
|
||||
has_buy_tag = 'buy_tag' in pair_data
|
||||
headers = headers + ['buy_tag'] if has_buy_tag else headers
|
||||
if not pair_data.empty:
|
||||
pair_data.loc[:, 'buy'] = 0 # cleanup if buy_signal is exist
|
||||
pair_data.loc[:, 'sell'] = 0 # cleanup if sell_signal is exist
|
||||
if has_buy_tag:
|
||||
pair_data.loc[:, 'buy_tag'] = None # cleanup if buy_tag is exist
|
||||
|
||||
df_analyzed = self.strategy.advise_sell(
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair}).copy()
|
||||
# Trim startup period from analyzed dataframe
|
||||
df_analyzed = trim_dataframe(df_analyzed, self.timerange,
|
||||
startup_candles=self.required_startup)
|
||||
# To avoid using data from future, we use buy/sell signals shifted
|
||||
# from the previous candle
|
||||
df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
|
||||
df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1)
|
||||
if has_buy_tag:
|
||||
df_analyzed.loc[:, 'buy_tag'] = df_analyzed.loc[:, 'buy_tag'].shift(1)
|
||||
|
||||
df_analyzed.drop(df_analyzed.head(1).index, inplace=True)
|
||||
|
||||
# Update dataprovider cache
|
||||
self.dataprovider._set_cached_df(pair, self.timeframe, df_analyzed)
|
||||
|
||||
# Convert from Pandas to list for performance reasons
|
||||
# (Looping Pandas is slow.)
|
||||
data[pair] = df_analyzed.values.tolist()
|
||||
data[pair] = df_analyzed[headers].values.tolist()
|
||||
return data
|
||||
|
||||
def _get_close_rate(self, sell_row: Tuple, trade: LocalTrade, sell: SellCheckTuple,
|
||||
@@ -262,7 +276,7 @@ class Backtesting:
|
||||
# Worst case: price reaches stop_positive_offset and dives down.
|
||||
stop_rate = (sell_row[OPEN_IDX] *
|
||||
(1 + abs(self.strategy.trailing_stop_positive_offset) -
|
||||
abs(self.strategy.trailing_stop_positive)))
|
||||
abs(self.strategy.trailing_stop_positive)))
|
||||
else:
|
||||
# Worst case: price ticks tiny bit above open and dives down.
|
||||
stop_rate = sell_row[OPEN_IDX] * (1 - abs(trade.stop_loss_pct))
|
||||
@@ -358,6 +372,7 @@ class Backtesting:
|
||||
|
||||
if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount):
|
||||
# Enter trade
|
||||
has_buy_tag = len(row) >= BUY_TAG_IDX + 1
|
||||
trade = LocalTrade(
|
||||
pair=pair,
|
||||
open_rate=row[OPEN_IDX],
|
||||
@@ -367,6 +382,7 @@ class Backtesting:
|
||||
fee_open=self.fee,
|
||||
fee_close=self.fee,
|
||||
is_open=True,
|
||||
buy_tag=row[BUY_TAG_IDX] if has_buy_tag else None,
|
||||
exchange='backtesting',
|
||||
)
|
||||
return trade
|
||||
@@ -423,10 +439,6 @@ class Backtesting:
|
||||
trades: List[LocalTrade] = []
|
||||
self.prepare_backtest(enable_protections)
|
||||
|
||||
# Update dataprovider cache
|
||||
for pair, dataframe in processed.items():
|
||||
self.dataprovider._set_cached_df(pair, self.timeframe, dataframe)
|
||||
|
||||
# Use dict of lists with data for performance
|
||||
# (looping lists is a lot faster than pandas DataFrames)
|
||||
data: Dict = self._get_ohlcv_as_lists(processed)
|
||||
@@ -537,14 +549,15 @@ class Backtesting:
|
||||
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
|
||||
|
||||
# Trim startup period from analyzed dataframe
|
||||
preprocessed = trim_dataframes(preprocessed, timerange, self.required_startup)
|
||||
preprocessed_tmp = trim_dataframes(preprocessed, timerange, self.required_startup)
|
||||
|
||||
if not preprocessed:
|
||||
if not preprocessed_tmp:
|
||||
raise OperationalException(
|
||||
"No data left after adjusting for startup candles.")
|
||||
|
||||
min_date, max_date = history.get_timerange(preprocessed)
|
||||
|
||||
# Use preprocessed_tmp for date generation (the trimmed dataframe).
|
||||
# Backtesting will re-trim the dataframes after buy/sell signal generation.
|
||||
min_date, max_date = history.get_timerange(preprocessed_tmp)
|
||||
logger.info(f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(max_date - min_date).days} days).')
|
||||
|
@@ -102,16 +102,18 @@ class Hyperopt:
|
||||
self.num_epochs_saved = 0
|
||||
self.current_best_epoch: Optional[Dict[str, Any]] = None
|
||||
|
||||
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
|
||||
if hasattr(self.custom_hyperopt, 'populate_indicators'):
|
||||
self.backtesting.strategy.advise_indicators = ( # type: ignore
|
||||
self.custom_hyperopt.populate_indicators) # type: ignore
|
||||
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
|
||||
self.backtesting.strategy.advise_buy = ( # type: ignore
|
||||
self.custom_hyperopt.populate_buy_trend) # type: ignore
|
||||
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
|
||||
self.backtesting.strategy.advise_sell = ( # type: ignore
|
||||
self.custom_hyperopt.populate_sell_trend) # type: ignore
|
||||
if not self.auto_hyperopt:
|
||||
# Populate "fallback" functions here
|
||||
# (hasattr is slow so should not be run during "regular" operations)
|
||||
if hasattr(self.custom_hyperopt, 'populate_indicators'):
|
||||
self.backtesting.strategy.advise_indicators = ( # type: ignore
|
||||
self.custom_hyperopt.populate_indicators) # type: ignore
|
||||
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
|
||||
self.backtesting.strategy.advise_buy = ( # type: ignore
|
||||
self.custom_hyperopt.populate_buy_trend) # type: ignore
|
||||
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
|
||||
self.backtesting.strategy.advise_sell = ( # type: ignore
|
||||
self.custom_hyperopt.populate_sell_trend) # type: ignore
|
||||
|
||||
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
|
||||
if self.config.get('use_max_market_positions', True):
|
||||
@@ -264,17 +266,14 @@ class Hyperopt:
|
||||
|
||||
def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict:
|
||||
"""
|
||||
Used Optimize function. Called once per epoch to optimize whatever is configured.
|
||||
Used Optimize function.
|
||||
Called once per epoch to optimize whatever is configured.
|
||||
Keep this function as optimized as possible!
|
||||
"""
|
||||
backtest_start_time = datetime.now(timezone.utc)
|
||||
params_dict = self._get_params_dict(self.dimensions, raw_params)
|
||||
|
||||
# Apply parameters
|
||||
if HyperoptTools.has_space(self.config, 'roi'):
|
||||
self.backtesting.strategy.minimal_roi = ( # type: ignore
|
||||
self.custom_hyperopt.generate_roi_table(params_dict))
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'buy'):
|
||||
self.backtesting.strategy.advise_buy = ( # type: ignore
|
||||
self.custom_hyperopt.buy_strategy_generator(params_dict))
|
||||
@@ -283,6 +282,10 @@ class Hyperopt:
|
||||
self.backtesting.strategy.advise_sell = ( # type: ignore
|
||||
self.custom_hyperopt.sell_strategy_generator(params_dict))
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'roi'):
|
||||
self.backtesting.strategy.minimal_roi = ( # type: ignore
|
||||
self.custom_hyperopt.generate_roi_table(params_dict))
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'stoploss'):
|
||||
self.backtesting.strategy.stoploss = params_dict['stoploss']
|
||||
|
||||
@@ -378,16 +381,15 @@ class Hyperopt:
|
||||
|
||||
preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data)
|
||||
|
||||
# Trim startup period from analyzed dataframe
|
||||
# Trim startup period from analyzed dataframe to get correct dates for output.
|
||||
processed = trim_dataframes(preprocessed, timerange, self.backtesting.required_startup)
|
||||
|
||||
self.min_date, self.max_date = get_timerange(processed)
|
||||
|
||||
logger.info(f'Hyperopting with data from {self.min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(self.max_date - self.min_date).days} days)..')
|
||||
|
||||
dump(processed, self.data_pickle_file)
|
||||
# Store non-trimmed data - will be trimmed after signal generation.
|
||||
dump(preprocessed, self.data_pickle_file)
|
||||
|
||||
def start(self) -> None:
|
||||
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
|
||||
|
@@ -54,6 +54,7 @@ def migrate_trades_table(decl_base, inspector, engine, table_back_name: str, col
|
||||
# sqlite does not support literals for booleans
|
||||
is_short = get_column_def(cols, 'is_short', '0')
|
||||
interest_mode = get_column_def(cols, 'interest_mode', 'null')
|
||||
buy_tag = get_column_def(cols, 'buy_tag', 'null')
|
||||
# If ticker-interval existed use that, else null.
|
||||
if has_column(cols, 'ticker_interval'):
|
||||
timeframe = get_column_def(cols, 'timeframe', 'ticker_interval')
|
||||
@@ -72,7 +73,8 @@ def migrate_trades_table(decl_base, inspector, engine, table_back_name: str, col
|
||||
# Schema migration necessary
|
||||
with engine.begin() as connection:
|
||||
connection.execute(text(f"alter table trades rename to {table_back_name}"))
|
||||
# drop indexes on backup table
|
||||
with engine.begin() as connection:
|
||||
# drop indexes on backup table in new session
|
||||
for index in inspector.get_indexes(table_back_name):
|
||||
connection.execute(text(f"drop index {index['name']}"))
|
||||
# let SQLAlchemy create the schema as required
|
||||
@@ -83,23 +85,16 @@ def migrate_trades_table(decl_base, inspector, engine, table_back_name: str, col
|
||||
connection.execute(text(f"""insert into trades
|
||||
(id, exchange, pair, is_open,
|
||||
fee_open, fee_open_cost, fee_open_currency,
|
||||
fee_close, fee_close_cost, fee_open_currency, open_rate,
|
||||
fee_close, fee_close_cost, fee_close_currency, open_rate,
|
||||
open_rate_requested, close_rate, close_rate_requested, close_profit,
|
||||
stake_amount, amount, amount_requested, open_date, close_date, open_order_id,
|
||||
stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct,
|
||||
stoploss_order_id, stoploss_last_update,
|
||||
max_rate, min_rate, sell_reason, sell_order_status, strategy,
|
||||
max_rate, min_rate, sell_reason, sell_order_status, strategy, buy_tag,
|
||||
timeframe, open_trade_value, close_profit_abs,
|
||||
leverage, interest_rate, isolated_liq, is_short, interest_mode
|
||||
)
|
||||
select id, lower(exchange),
|
||||
case
|
||||
when instr(pair, '_') != 0 then
|
||||
substr(pair, instr(pair, '_') + 1) || '/' ||
|
||||
substr(pair, 1, instr(pair, '_') - 1)
|
||||
else pair
|
||||
end
|
||||
pair,
|
||||
select id, lower(exchange), pair,
|
||||
is_open, {fee_open} fee_open, {fee_open_cost} fee_open_cost,
|
||||
{fee_open_currency} fee_open_currency, {fee_close} fee_close,
|
||||
{fee_close_cost} fee_close_cost, {fee_close_currency} fee_close_currency,
|
||||
@@ -112,7 +107,7 @@ def migrate_trades_table(decl_base, inspector, engine, table_back_name: str, col
|
||||
{stoploss_order_id} stoploss_order_id, {stoploss_last_update} stoploss_last_update,
|
||||
{max_rate} max_rate, {min_rate} min_rate, {sell_reason} sell_reason,
|
||||
{sell_order_status} sell_order_status,
|
||||
{strategy} strategy, {timeframe} timeframe,
|
||||
{strategy} strategy, {buy_tag} buy_tag, {timeframe} timeframe,
|
||||
{open_trade_value} open_trade_value, {close_profit_abs} close_profit_abs,
|
||||
{leverage} leverage, {interest_rate} interest_rate,
|
||||
{isolated_liq} isolated_liq, {is_short} is_short,
|
||||
@@ -143,7 +138,9 @@ def migrate_orders_table(decl_base, inspector, engine, table_back_name: str, col
|
||||
|
||||
with engine.begin() as connection:
|
||||
connection.execute(text(f"alter table orders rename to {table_back_name}"))
|
||||
# drop indexes on backup table
|
||||
|
||||
with engine.begin() as connection:
|
||||
# drop indexes on backup table in new session
|
||||
for index in inspector.get_indexes(table_back_name):
|
||||
connection.execute(text(f"drop index {index['name']}"))
|
||||
|
||||
@@ -174,7 +171,7 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
|
||||
table_back_name = get_backup_name(tabs, 'trades_bak')
|
||||
|
||||
# Check for latest column
|
||||
if not has_column(cols, 'open_trade_value'):
|
||||
if not has_column(cols, 'buy_tag'):
|
||||
logger.info(f'Running database migration for trades - backup: {table_back_name}')
|
||||
migrate_trades_table(decl_base, inspector, engine, table_back_name, cols)
|
||||
# Reread columns - the above recreated the table!
|
||||
|
@@ -261,6 +261,7 @@ class LocalTrade():
|
||||
sell_reason: str = ''
|
||||
sell_order_status: str = ''
|
||||
strategy: str = ''
|
||||
buy_tag: Optional[str] = None
|
||||
timeframe: Optional[int] = None
|
||||
|
||||
# Margin trading properties
|
||||
@@ -378,6 +379,7 @@ class LocalTrade():
|
||||
'amount_requested': round(self.amount_requested, 8) if self.amount_requested else None,
|
||||
'stake_amount': round(self.stake_amount, 8),
|
||||
'strategy': self.strategy,
|
||||
'buy_tag': self.buy_tag,
|
||||
'timeframe': self.timeframe,
|
||||
|
||||
'fee_open': self.fee_open,
|
||||
@@ -817,7 +819,7 @@ class LocalTrade():
|
||||
|
||||
# skip case if trailing-stop changed the stoploss already.
|
||||
if (trade.stop_loss == trade.initial_stop_loss
|
||||
and trade.initial_stop_loss_pct != desired_stoploss):
|
||||
and trade.initial_stop_loss_pct != desired_stoploss):
|
||||
# Stoploss value got changed
|
||||
|
||||
logger.info(f"Stoploss for {trade} needs adjustment...")
|
||||
@@ -884,6 +886,7 @@ class Trade(_DECL_BASE, LocalTrade):
|
||||
sell_reason = Column(String(100), nullable=True) # TODO-mg: Change to close_reason
|
||||
sell_order_status = Column(String(100), nullable=True) # TODO-mg: Change to close_order_status
|
||||
strategy = Column(String(100), nullable=True)
|
||||
buy_tag = Column(String(100), nullable=True)
|
||||
timeframe = Column(Integer, nullable=True)
|
||||
|
||||
# Margin trading properties
|
||||
|
@@ -26,6 +26,7 @@ class RangeStabilityFilter(IPairList):
|
||||
|
||||
self._days = pairlistconfig.get('lookback_days', 10)
|
||||
self._min_rate_of_change = pairlistconfig.get('min_rate_of_change', 0.01)
|
||||
self._max_rate_of_change = pairlistconfig.get('max_rate_of_change', None)
|
||||
self._refresh_period = pairlistconfig.get('refresh_period', 1440)
|
||||
|
||||
self._pair_cache: TTLCache = TTLCache(maxsize=1000, ttl=self._refresh_period)
|
||||
@@ -50,8 +51,12 @@ class RangeStabilityFilter(IPairList):
|
||||
"""
|
||||
Short whitelist method description - used for startup-messages
|
||||
"""
|
||||
max_rate_desc = ""
|
||||
if self._max_rate_of_change:
|
||||
max_rate_desc = (f" and above {self._max_rate_of_change}")
|
||||
return (f"{self.name} - Filtering pairs with rate of change below "
|
||||
f"{self._min_rate_of_change} over the last {plural(self._days, 'day')}.")
|
||||
f"{self._min_rate_of_change}{max_rate_desc} over the "
|
||||
f"last {plural(self._days, 'day')}.")
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
@@ -104,6 +109,16 @@ class RangeStabilityFilter(IPairList):
|
||||
f"which is below the threshold of {self._min_rate_of_change}.",
|
||||
logger.info)
|
||||
result = False
|
||||
if self._max_rate_of_change:
|
||||
if pct_change <= self._max_rate_of_change:
|
||||
result = True
|
||||
else:
|
||||
self.log_once(
|
||||
f"Removed {pair} from whitelist, because rate of change "
|
||||
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
|
||||
f"which is above the threshold of {self._max_rate_of_change}.",
|
||||
logger.info)
|
||||
result = False
|
||||
self._pair_cache[pair] = result
|
||||
|
||||
return result
|
||||
|
@@ -47,15 +47,15 @@ async def api_start_backtest(bt_settings: BacktestRequest, background_tasks: Bac
|
||||
not ApiServer._bt
|
||||
or lastconfig.get('timeframe') != strat.timeframe
|
||||
or lastconfig.get('dry_run_wallet') != btconfig.get('dry_run_wallet', 0)
|
||||
or lastconfig.get('timerange') != btconfig['timerange']
|
||||
):
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
ApiServer._bt = Backtesting(btconfig)
|
||||
|
||||
# Only reload data if timeframe or timerange changed.
|
||||
# Only reload data if timeframe changed.
|
||||
if (
|
||||
not ApiServer._bt_data
|
||||
or not ApiServer._bt_timerange
|
||||
or lastconfig.get('timerange') != btconfig['timerange']
|
||||
or lastconfig.get('stake_amount') != btconfig.get('stake_amount')
|
||||
or lastconfig.get('enable_protections') != btconfig.get('enable_protections')
|
||||
or lastconfig.get('protections') != btconfig.get('protections', [])
|
||||
|
@@ -151,6 +151,7 @@ class TradeSchema(BaseModel):
|
||||
amount_requested: float
|
||||
stake_amount: float
|
||||
strategy: str
|
||||
buy_tag: Optional[str]
|
||||
timeframe: int
|
||||
fee_open: Optional[float]
|
||||
fee_open_cost: Optional[float]
|
||||
|
@@ -208,15 +208,25 @@ class Telegram(RPCHandler):
|
||||
else:
|
||||
msg['stake_amount_fiat'] = 0
|
||||
|
||||
message = (f"\N{LARGE BLUE CIRCLE} *{msg['exchange']}:* Buying {msg['pair']}"
|
||||
f" (#{msg['trade_id']})\n"
|
||||
f"*Amount:* `{msg['amount']:.8f}`\n"
|
||||
f"*Open Rate:* `{msg['limit']:.8f}`\n"
|
||||
f"*Current Rate:* `{msg['current_rate']:.8f}`\n"
|
||||
f"*Total:* `({round_coin_value(msg['stake_amount'], msg['stake_currency'])}")
|
||||
|
||||
content = []
|
||||
content.append(
|
||||
f"\N{LARGE BLUE CIRCLE} *{msg['exchange']}:* Buying {msg['pair']}"
|
||||
f" (#{msg['trade_id']})\n"
|
||||
)
|
||||
if msg.get('buy_tag', None):
|
||||
content.append(f"*Buy Tag:* `{msg['buy_tag']}`\n")
|
||||
content.append(f"*Amount:* `{msg['amount']:.8f}`\n")
|
||||
content.append(f"*Open Rate:* `{msg['limit']:.8f}`\n")
|
||||
content.append(f"*Current Rate:* `{msg['current_rate']:.8f}`\n")
|
||||
content.append(
|
||||
f"*Total:* `({round_coin_value(msg['stake_amount'], msg['stake_currency'])}"
|
||||
)
|
||||
if msg.get('fiat_currency', None):
|
||||
message += f", {round_coin_value(msg['stake_amount_fiat'], msg['fiat_currency'])}"
|
||||
content.append(
|
||||
f", {round_coin_value(msg['stake_amount_fiat'], msg['fiat_currency'])}"
|
||||
)
|
||||
|
||||
message = ''.join(content)
|
||||
message += ")`"
|
||||
return message
|
||||
|
||||
@@ -354,6 +364,7 @@ class Telegram(RPCHandler):
|
||||
"*Trade ID:* `{trade_id}` `(since {open_date_hum})`",
|
||||
"*Current Pair:* {pair}",
|
||||
"*Amount:* `{amount} ({stake_amount} {base_currency})`",
|
||||
"*Buy Tag:* `{buy_tag}`" if r['buy_tag'] else "",
|
||||
"*Open Rate:* `{open_rate:.8f}`",
|
||||
"*Close Rate:* `{close_rate}`" if r['close_rate'] else "",
|
||||
"*Current Rate:* `{current_rate:.8f}`",
|
||||
|
@@ -13,7 +13,7 @@ from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import SellType, SignalType
|
||||
from freqtrade.enums import SellType, SignalTagType, SignalType
|
||||
from freqtrade.exceptions import OperationalException, StrategyError
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.exchange.exchange import timeframe_to_next_date
|
||||
@@ -422,6 +422,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
logger.debug("Skipping TA Analysis for already analyzed candle")
|
||||
dataframe['buy'] = 0
|
||||
dataframe['sell'] = 0
|
||||
dataframe['buy_tag'] = None
|
||||
|
||||
# Other Defs in strategy that want to be called every loop here
|
||||
# twitter_sell = self.watch_twitter_feed(dataframe, metadata)
|
||||
@@ -482,8 +483,6 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
message = "No dataframe returned (return statement missing?)."
|
||||
elif 'buy' not in dataframe:
|
||||
message = "Buy column not set."
|
||||
elif 'sell' not in dataframe:
|
||||
message = "Sell column not set."
|
||||
elif df_len != len(dataframe):
|
||||
message = message_template.format("length")
|
||||
elif df_close != dataframe["close"].iloc[-1]:
|
||||
@@ -496,7 +495,12 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
else:
|
||||
raise StrategyError(message)
|
||||
|
||||
def get_signal(self, pair: str, timeframe: str, dataframe: DataFrame) -> Tuple[bool, bool]:
|
||||
def get_signal(
|
||||
self,
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
dataframe: DataFrame
|
||||
) -> Tuple[bool, bool, Optional[str]]:
|
||||
"""
|
||||
Calculates current signal based based on the buy / sell columns of the dataframe.
|
||||
Used by Bot to get the signal to buy or sell
|
||||
@@ -507,7 +511,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
"""
|
||||
if not isinstance(dataframe, DataFrame) or dataframe.empty:
|
||||
logger.warning(f'Empty candle (OHLCV) data for pair {pair}')
|
||||
return False, False
|
||||
return False, False, None
|
||||
|
||||
latest_date = dataframe['date'].max()
|
||||
latest = dataframe.loc[dataframe['date'] == latest_date].iloc[-1]
|
||||
@@ -522,9 +526,16 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
'Outdated history for pair %s. Last tick is %s minutes old',
|
||||
pair, int((arrow.utcnow() - latest_date).total_seconds() // 60)
|
||||
)
|
||||
return False, False
|
||||
return False, False, None
|
||||
|
||||
buy = latest[SignalType.BUY.value] == 1
|
||||
|
||||
sell = False
|
||||
if SignalType.SELL.value in latest:
|
||||
sell = latest[SignalType.SELL.value] == 1
|
||||
|
||||
buy_tag = latest.get(SignalTagType.BUY_TAG.value, None)
|
||||
|
||||
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
|
||||
logger.debug('trigger: %s (pair=%s) buy=%s sell=%s',
|
||||
latest['date'], pair, str(buy), str(sell))
|
||||
timeframe_seconds = timeframe_to_seconds(timeframe)
|
||||
@@ -532,8 +543,8 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
current_time=datetime.now(timezone.utc),
|
||||
timeframe_seconds=timeframe_seconds,
|
||||
buy=buy):
|
||||
return False, sell
|
||||
return buy, sell
|
||||
return False, sell, buy_tag
|
||||
return buy, sell, buy_tag
|
||||
|
||||
def ignore_expired_candle(self, latest_date: datetime, current_time: datetime,
|
||||
timeframe_seconds: int, buy: bool):
|
||||
|
Reference in New Issue
Block a user