merged lev-freqtradebot with lev-strat

This commit is contained in:
Sam Germain
2021-09-19 19:06:43 -06:00
55 changed files with 2704 additions and 1036 deletions

View File

@@ -157,7 +157,7 @@ class Backtesting:
self.strategy: IStrategy = strategy
strategy.dp = self.dataprovider
# Attach Wallets to Strategy baseclass
IStrategy.wallets = self.wallets
strategy.wallets = self.wallets
# Set stoploss_on_exchange to false for backtesting,
# since a "perfect" stoploss-sell is assumed anyway
# And the regular "stoploss" function would not apply to that case

View File

@@ -8,6 +8,7 @@ from typing import Any, Dict
from freqtrade import constants
from freqtrade.configuration import TimeRange, validate_config_consistency
from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge
from freqtrade.optimize.optimize_reports import generate_edge_table
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
@@ -33,6 +34,7 @@ class EdgeCli:
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
self.strategy = StrategyResolver.load_strategy(self.config)
self.strategy.dp = DataProvider(config, None)
validate_config_consistency(self.config)

View File

@@ -45,7 +45,7 @@ progressbar.streams.wrap_stdout()
logger = logging.getLogger(__name__)
INITIAL_POINTS = 30
INITIAL_POINTS = 5
# Keep no more than SKOPT_MODEL_QUEUE_SIZE models
# in the skopt model queue, to optimize memory consumption
@@ -241,7 +241,7 @@ class Hyperopt:
if HyperoptTools.has_space(self.config, 'buy'):
logger.debug("Hyperopt has 'buy' space")
self.buy_space = self.custom_hyperopt.indicator_space()
self.buy_space = self.custom_hyperopt.buy_indicator_space()
if HyperoptTools.has_space(self.config, 'sell'):
logger.debug("Hyperopt has 'sell' space")
@@ -365,10 +365,20 @@ class Hyperopt:
}
def get_optimizer(self, dimensions: List[Dimension], cpu_count) -> Optimizer:
estimator = self.custom_hyperopt.generate_estimator()
acq_optimizer = "sampling"
if isinstance(estimator, str):
if estimator not in ("GP", "RF", "ET", "GBRT"):
raise OperationalException(f"Estimator {estimator} not supported.")
else:
acq_optimizer = "auto"
logger.info(f"Using estimator {estimator}.")
return Optimizer(
dimensions,
base_estimator="ET",
acq_optimizer="auto",
base_estimator=estimator,
acq_optimizer=acq_optimizer,
n_initial_points=INITIAL_POINTS,
acq_optimizer_kwargs={'n_jobs': cpu_count},
random_state=self.random_state,

View File

@@ -12,7 +12,7 @@ from freqtrade.exceptions import OperationalException
with suppress(ImportError):
from skopt.space import Dimension
from freqtrade.optimize.hyperopt_interface import IHyperOpt
from freqtrade.optimize.hyperopt_interface import EstimatorType, IHyperOpt
def _format_exception_message(space: str) -> str:
@@ -56,7 +56,7 @@ class HyperOptAuto(IHyperOpt):
else:
_format_exception_message(category)
def indicator_space(self) -> List['Dimension']:
def buy_indicator_space(self) -> List['Dimension']:
return self._get_indicator_space('buy')
def sell_indicator_space(self) -> List['Dimension']:
@@ -79,3 +79,6 @@ class HyperOptAuto(IHyperOpt):
def trailing_space(self) -> List['Dimension']:
return self._get_func('trailing_space')()
def generate_estimator(self) -> EstimatorType:
return self._get_func('generate_estimator')()

View File

@@ -5,8 +5,9 @@ This module defines the interface to apply for hyperopt
import logging
import math
from abc import ABC
from typing import Dict, List
from typing import Dict, List, Union
from sklearn.base import RegressorMixin
from skopt.space import Categorical, Dimension, Integer
from freqtrade.exchange import timeframe_to_minutes
@@ -17,6 +18,8 @@ from freqtrade.strategy import IStrategy
logger = logging.getLogger(__name__)
EstimatorType = Union[RegressorMixin, str]
class IHyperOpt(ABC):
"""
@@ -37,6 +40,14 @@ class IHyperOpt(ABC):
IHyperOpt.ticker_interval = str(config['timeframe']) # DEPRECATED
IHyperOpt.timeframe = str(config['timeframe'])
def generate_estimator(self) -> EstimatorType:
"""
Return base_estimator.
Can be any of "GP", "RF", "ET", "GBRT" or an instance of a class
inheriting from RegressorMixin (from sklearn).
"""
return 'ET'
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
"""
Create a ROI table.

View File

@@ -7,6 +7,7 @@ from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Tuple
import numpy as np
import pandas as pd
import rapidjson
import tabulate
from colorama import Fore, Style
@@ -298,8 +299,8 @@ class HyperoptTools():
f"Objective: {results['loss']:.5f}")
@staticmethod
def prepare_trials_columns(trials, legacy_mode: bool, has_drawdown: bool) -> str:
def prepare_trials_columns(trials: pd.DataFrame, legacy_mode: bool,
has_drawdown: bool) -> pd.DataFrame:
trials['Best'] = ''
if 'results_metrics.winsdrawslosses' not in trials.columns:
@@ -435,8 +436,7 @@ class HyperoptTools():
return table
@staticmethod
def export_csv_file(config: dict, results: list, total_epochs: int, highlight_best: bool,
csv_file: str) -> None:
def export_csv_file(config: dict, results: list, csv_file: str) -> None:
"""
Log result to csv-file
"""