Update hyperopt.py
1. Try to get points using `self.opt.ask` first 2. Discard the points that have already been evaluated 3. Retry using `self.opt.ask` up to 3 times 4. If still some points are missing in respect to `n_points`, random sample some points 5. Repeat until at least `n_points` points in the `asked_non_tried` list 6. Return a list with legth truncated at `n_points`
This commit is contained in:
parent
d2a5448305
commit
d796ce0935
@ -414,6 +414,31 @@ class Hyperopt:
|
|||||||
# Store non-trimmed data - will be trimmed after signal generation.
|
# Store non-trimmed data - will be trimmed after signal generation.
|
||||||
dump(preprocessed, self.data_pickle_file)
|
dump(preprocessed, self.data_pickle_file)
|
||||||
|
|
||||||
|
def get_asked_points(self, n_points: int) -> List[Any]:
|
||||||
|
'''
|
||||||
|
Steps:
|
||||||
|
1. Try to get points using `self.opt.ask` first
|
||||||
|
2. Discard the points that have already been evaluated
|
||||||
|
3. Retry using `self.opt.ask` up to 3 times
|
||||||
|
4. If still some points are missing in respect to `n_points`, random sample some points
|
||||||
|
5. Repeat until at least `n_points` points in the `asked_non_tried` list
|
||||||
|
6. Return a list with legth truncated at `n_points`
|
||||||
|
'''
|
||||||
|
i = 0
|
||||||
|
asked_non_tried = []
|
||||||
|
while i < 100:
|
||||||
|
if len(asked_non_tried) < n_points:
|
||||||
|
if i < 3:
|
||||||
|
asked = self.opt.ask(n_points=n_points)
|
||||||
|
else:
|
||||||
|
# use random sample if `self.opt.ask` returns points points already tried
|
||||||
|
asked = self.opt.space.rvs(n_samples=n_points * 5)
|
||||||
|
asked_non_tried += [x for x in asked if x not in self.opt.Xi and x not in asked_non_tried]
|
||||||
|
i += 1
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
return asked_non_tried[:n_points]
|
||||||
|
|
||||||
def start(self) -> None:
|
def start(self) -> None:
|
||||||
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
|
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
|
||||||
logger.info(f"Using optimizer random state: {self.random_state}")
|
logger.info(f"Using optimizer random state: {self.random_state}")
|
||||||
@ -478,11 +503,11 @@ class Hyperopt:
|
|||||||
n_rest = (i + 1) * jobs - self.total_epochs
|
n_rest = (i + 1) * jobs - self.total_epochs
|
||||||
current_jobs = jobs - n_rest if n_rest > 0 else jobs
|
current_jobs = jobs - n_rest if n_rest > 0 else jobs
|
||||||
|
|
||||||
asked = self.opt.ask(n_points=current_jobs)
|
asked = self.get_asked_points(n_points=current_jobs)
|
||||||
f_val = self.run_optimizer_parallel(parallel, asked, i)
|
f_val = self.run_optimizer_parallel(parallel, asked, i)
|
||||||
res = self.opt.tell(asked, [v['loss'] for v in f_val])
|
res = self.opt.tell(asked, [v['loss'] for v in f_val])
|
||||||
|
|
||||||
self.plot_optimizer(res, path='user_data/scripts', convergence=False, regret=False, r2=True, objective=True, jobs=jobs)
|
self.plot_optimizer(res, path='user_data/scripts', convergence=False, regret=False, r2=False, objective=True, jobs=jobs)
|
||||||
|
|
||||||
if res.models and hasattr(res.models[-1], "kernel_"):
|
if res.models and hasattr(res.models[-1], "kernel_"):
|
||||||
print(f'kernel: {res.models[-1].kernel_}')
|
print(f'kernel: {res.models[-1].kernel_}')
|
||||||
|
Loading…
Reference in New Issue
Block a user