Merge branch 'freqtrade:develop' into develop

This commit is contained in:
farmage 2022-07-20 22:03:52 +03:00 committed by GitHub
commit d75ba31016
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
44 changed files with 13396 additions and 12238 deletions

View File

@ -351,7 +351,7 @@ jobs:
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@master
uses: pypa/gh-action-pypi-publish@v1.5.0
if: (github.event_name == 'release')
with:
user: __token__
@ -359,7 +359,7 @@ jobs:
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@master
uses: pypa/gh-action-pypi-publish@v1.5.0
if: (github.event_name == 'release')
with:
user: __token__

2
.gitignore vendored
View File

@ -80,6 +80,8 @@ instance/
# Sphinx documentation
docs/_build/
# Mkdocs documentation
site/
# PyBuilder
target/

View File

@ -15,7 +15,7 @@ repos:
additional_dependencies:
- types-cachetools==5.2.1
- types-filelock==3.2.7
- types-requests==2.28.0
- types-requests==2.28.1
- types-tabulate==0.8.11
- types-python-dateutil==2.8.18
# stages: [push]

View File

@ -155,7 +155,8 @@
"entry_cancel": "on",
"exit_cancel": "on",
"protection_trigger": "off",
"protection_trigger_global": "on"
"protection_trigger_global": "on",
"show_candle": "off"
},
"reload": true,
"balance_dust_level": 0.01

View File

@ -334,7 +334,7 @@ lev_tiers = exchange.fetch_leverage_tiers()
# Assumes this is running in the root of the repository.
file = Path('freqtrade/exchange/binance_leverage_tiers.json')
json.dump(lev_tiers, file.open('w'), indent=2)
json.dump(dict(sorted(lev_tiers.items())), file.open('w'), indent=2)
```

View File

@ -272,6 +272,7 @@ The last one we call `trigger` and use it to decide which buy trigger we want to
!!! Note "Parameter space assignment"
Parameters must either be assigned to a variable named `buy_*` or `sell_*` - or contain `space='buy'` | `space='sell'` to be assigned to a space correctly.
If no parameter is available for a space, you'll receive the error that no space was found when running hyperopt.
Parameters with unclear space (e.g. `adx_period = IntParameter(4, 24, default=14)` - no explicit nor implicit space) will not be detected and will therefore be ignored.
So let's write the buy strategy using these values:
@ -334,6 +335,7 @@ There are four parameter types each suited for different purposes.
## Optimizing an indicator parameter
Assuming you have a simple strategy in mind - a EMA cross strategy (2 Moving averages crossing) - and you'd like to find the ideal parameters for this strategy.
By default, we assume a stoploss of 5% - and a take-profit (`minimal_roi`) of 10% - which means freqtrade will sell the trade once 10% profit has been reached.
``` python
from pandas import DataFrame
@ -348,6 +350,9 @@ import freqtrade.vendor.qtpylib.indicators as qtpylib
class MyAwesomeStrategy(IStrategy):
stoploss = -0.05
timeframe = '15m'
minimal_roi = {
"0": 0.10
},
# Define the parameter spaces
buy_ema_short = IntParameter(3, 50, default=5)
buy_ema_long = IntParameter(15, 200, default=50)
@ -403,7 +408,7 @@ Using `self.buy_ema_short.range` will return a range object containing all entri
In this case (`IntParameter(3, 50, default=5)`), the loop would run for all numbers between 3 and 50 (`[3, 4, 5, ... 49, 50]`).
By using this in a loop, hyperopt will generate 48 new columns (`['buy_ema_3', 'buy_ema_4', ... , 'buy_ema_50']`).
Hyperopt itself will then use the selected value to create the buy and sell signals
Hyperopt itself will then use the selected value to create the buy and sell signals.
While this strategy is most likely too simple to provide consistent profit, it should serve as an example how optimize indicator parameters.
@ -867,6 +872,22 @@ To combat these, you have multiple options:
* reduce the number of parallel processes (`-j <n>`)
* Increase the memory of your machine
## The objective has been evaluated at this point before.
If you see `The objective has been evaluated at this point before.` - then this is a sign that your space has been exhausted, or is close to that.
Basically all points in your space have been hit (or a local minima has been hit) - and hyperopt does no longer find points in the multi-dimensional space it did not try yet.
Freqtrade tries to counter the "local minima" problem by using new, randomized points in this case.
Example:
``` python
buy_ema_short = IntParameter(5, 20, default=10, space="buy", optimize=True)
# This is the only parameter in the buy space
```
The `buy_ema_short` space has 15 possible values (`5, 6, ... 19, 20`). If you now run hyperopt for the buy space, hyperopt will only have 15 values to try before running out of options.
Your epochs should therefore be aligned to the possible values - or you should be ready to interrupt a run if you norice a lot of `The objective has been evaluated at this point before.` warnings.
## Show details of Hyperopt results
After you run Hyperopt for the desired amount of epochs, you can later list all results for analysis, select only best or profitable once, and show the details for any of the epochs previously evaluated. This can be done with the `hyperopt-list` and `hyperopt-show` sub-commands. The usage of these sub-commands is described in the [Utils](utils.md#list-hyperopt-results) chapter.

View File

@ -1,5 +1,6 @@
markdown==3.4.1
mkdocs==1.3.0
mkdocs-material==8.3.8
mdx_truly_sane_lists==1.2
mkdocs-material==8.3.9
mdx_truly_sane_lists==1.3
pymdown-extensions==9.5
jinja2==3.1.2

View File

@ -224,3 +224,5 @@ for val in self.buy_ema_short.range:
# Append columns to existing dataframe
merged_frame = pd.concat(frames, axis=1)
```
Freqtrade does however also counter this by running `dataframe.copy()` on the dataframe right after the `populate_indicators()` method - so performance implications of this should be low to non-existant.

View File

@ -82,8 +82,9 @@ Called before entering a trade, makes it possible to manage your position size w
```python
class AwesomeStrategy(IStrategy):
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
proposed_stake: float, min_stake: Optional[float], max_stake: float,
leverage: float, entry_tag: Optional[str], side: str,
**kwargs) -> float:
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
current_candle = dataframe.iloc[-1].squeeze()
@ -673,9 +674,10 @@ class DigDeeperStrategy(IStrategy):
max_dca_multiplier = 5.5
# This is called when placing the initial order (opening trade)
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: Optional[float], max_stake: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
leverage: float, entry_tag: Optional[str], side: str,
**kwargs) -> float:
# We need to leave most of the funds for possible further DCA orders
# This also applies to fixed stakes

View File

@ -31,11 +31,13 @@ pair = "BTC/USDT"
```python
# Load data using values set above
from freqtrade.data.history import load_pair_history
from freqtrade.enums import CandleType
candles = load_pair_history(datadir=data_location,
timeframe=config["timeframe"],
pair=pair,
data_format = "hdf5",
candle_type=CandleType.SPOT,
)
# Confirm success

View File

@ -97,7 +97,8 @@ Example configuration showing the different settings:
"entry_fill": "off",
"exit_fill": "off",
"protection_trigger": "off",
"protection_trigger_global": "on"
"protection_trigger_global": "on",
"show_candle": "off"
},
"reload": true,
"balance_dust_level": 0.01
@ -108,7 +109,7 @@ Example configuration showing the different settings:
`exit` notifications are sent when the order is placed, while `exit_fill` notifications are sent when the order is filled on the exchange.
`*_fill` notifications are off by default and must be explicitly enabled.
`protection_trigger` notifications are sent when a protection triggers and `protection_trigger_global` notifications trigger when global protections are triggered.
`show_candle` - show candle values as part of entry/exit messages. Only possible value is "ohlc".
`balance_dust_level` will define what the `/balance` command takes as "dust" - Currencies with a balance below this will be shown.
`reload` allows you to disable reload-buttons on selected messages.

View File

@ -314,6 +314,10 @@ CONF_SCHEMA = {
'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS,
},
'show_candle': {
'type': 'string',
'enum': ['off', 'ohlc'],
},
}
},
'reload': {'type': 'boolean'},
@ -539,3 +543,4 @@ TradeList = List[List]
LongShort = Literal['long', 'short']
EntryExit = Literal['entry', 'exit']
BuySell = Literal['buy', 'sell']
MakerTaker = Literal['maker', 'taker']

File diff suppressed because it is too large Load Diff

View File

@ -46,6 +46,7 @@ MAP_EXCHANGE_CHILDCLASS = {
'binanceje': 'binance',
'binanceusdm': 'binance',
'okex': 'okx',
'gate': 'gateio',
}
SUPPORTED_EXCHANGES = [
@ -63,17 +64,16 @@ EXCHANGE_HAS_REQUIRED = [
'fetchOrder',
'cancelOrder',
'createOrder',
# 'createLimitOrder', 'createMarketOrder',
'fetchBalance',
# Public endpoints
'loadMarkets',
'fetchOHLCV',
]
EXCHANGE_HAS_OPTIONAL = [
# Private
'fetchMyTrades', # Trades for order - fee detection
'createLimitOrder', 'createMarketOrder', # Either OR for orders
# 'setLeverage', # Margin/Futures trading
# 'setMarginMode', # Margin/Futures trading
# 'fetchFundingHistory', # Futures trading

View File

@ -20,7 +20,7 @@ from ccxt import ROUND_DOWN, ROUND_UP, TICK_SIZE, TRUNCATE, Precise, decimal_to_
from pandas import DataFrame
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BuySell,
EntryExit, ListPairsWithTimeframes, PairWithTimeframe)
EntryExit, ListPairsWithTimeframes, MakerTaker, PairWithTimeframe)
from freqtrade.data.converter import ohlcv_to_dataframe, trades_dict_to_list
from freqtrade.enums import OPTIMIZE_MODES, CandleType, MarginMode, TradingMode
from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFundsError,
@ -77,7 +77,9 @@ class Exchange:
"mark_ohlcv_price": "mark",
"mark_ohlcv_timeframe": "8h",
"ccxt_futures_name": "swap",
"fee_cost_in_contracts": False, # Fee cost needs contract conversion
"needs_trading_fees": False, # use fetch_trading_fees to cache fees
"order_props_in_contracts": ['amount', 'cost', 'filled', 'remaining'],
}
_ft_has: Dict = {}
_ft_has_futures: Dict = {}
@ -174,23 +176,11 @@ class Exchange:
logger.info(f'Using Exchange "{self.name}"')
if validate:
# Check if timeframe is available
self.validate_timeframes(config.get('timeframe'))
# Initial markets load
self._load_markets()
# Check if all pairs are available
self.validate_stakecurrency(config['stake_currency'])
if not exchange_config.get('skip_pair_validation'):
self.validate_pairs(config['exchange']['pair_whitelist'])
self.validate_ordertypes(config.get('order_types', {}))
self.validate_order_time_in_force(config.get('order_time_in_force', {}))
self.validate_config(config)
self.required_candle_call_count = self.validate_required_startup_candles(
config.get('startup_candle_count', 0), config.get('timeframe', ''))
self.validate_trading_mode_and_margin_mode(self.trading_mode, self.margin_mode)
self.validate_pricing(config['exit_pricing'])
self.validate_pricing(config['entry_pricing'])
# Converts the interval provided in minutes in config to seconds
self.markets_refresh_interval: int = exchange_config.get(
@ -213,6 +203,20 @@ class Exchange:
logger.info("Closing async ccxt session.")
self.loop.run_until_complete(self._api_async.close())
def validate_config(self, config):
# Check if timeframe is available
self.validate_timeframes(config.get('timeframe'))
# Check if all pairs are available
self.validate_stakecurrency(config['stake_currency'])
if not config['exchange'].get('skip_pair_validation'):
self.validate_pairs(config['exchange']['pair_whitelist'])
self.validate_ordertypes(config.get('order_types', {}))
self.validate_order_time_in_force(config.get('order_time_in_force', {}))
self.validate_trading_mode_and_margin_mode(self.trading_mode, self.margin_mode)
self.validate_pricing(config['exit_pricing'])
self.validate_pricing(config['entry_pricing'])
def _init_ccxt(self, exchange_config: Dict[str, Any], ccxt_module: CcxtModuleType = ccxt,
ccxt_kwargs: Dict = {}) -> ccxt.Exchange:
"""
@ -422,7 +426,7 @@ class Exchange:
if 'symbol' in order and order['symbol'] is not None:
contract_size = self._get_contract_size(order['symbol'])
if contract_size != 1:
for prop in ['amount', 'cost', 'filled', 'remaining']:
for prop in self._ft_has.get('order_props_in_contracts', []):
if prop in order and order[prop] is not None:
order[prop] = order[prop] * contract_size
return order
@ -820,7 +824,7 @@ class Exchange:
'price': rate,
'average': rate,
'amount': _amount,
'cost': _amount * rate / leverage,
'cost': _amount * rate,
'type': ordertype,
'side': side,
'filled': 0,
@ -846,20 +850,27 @@ class Exchange:
'filled': _amount,
'cost': (dry_order['amount'] * average) / leverage
})
dry_order = self.add_dry_order_fee(pair, dry_order)
# market orders will always incurr taker fees
dry_order = self.add_dry_order_fee(pair, dry_order, 'taker')
dry_order = self.check_dry_limit_order_filled(dry_order)
dry_order = self.check_dry_limit_order_filled(dry_order, immediate=True)
self._dry_run_open_orders[dry_order["id"]] = dry_order
# Copy order and close it - so the returned order is open unless it's a market order
return dry_order
def add_dry_order_fee(self, pair: str, dry_order: Dict[str, Any]) -> Dict[str, Any]:
def add_dry_order_fee(
self,
pair: str,
dry_order: Dict[str, Any],
taker_or_maker: MakerTaker,
) -> Dict[str, Any]:
fee = self.get_fee(pair, taker_or_maker=taker_or_maker)
dry_order.update({
'fee': {
'currency': self.get_pair_quote_currency(pair),
'cost': dry_order['cost'] * self.get_fee(pair),
'rate': self.get_fee(pair)
'cost': dry_order['cost'] * fee,
'rate': fee
}
})
return dry_order
@ -925,7 +936,8 @@ class Exchange:
pass
return False
def check_dry_limit_order_filled(self, order: Dict[str, Any]) -> Dict[str, Any]:
def check_dry_limit_order_filled(
self, order: Dict[str, Any], immediate: bool = False) -> Dict[str, Any]:
"""
Check dry-run limit order fill and update fee (if it filled).
"""
@ -939,7 +951,12 @@ class Exchange:
'filled': order['amount'],
'remaining': 0,
})
self.add_dry_order_fee(pair, order)
self.add_dry_order_fee(
pair,
order,
'taker' if immediate else 'maker',
)
return order
@ -1597,7 +1614,7 @@ class Exchange:
@retrier
def get_fee(self, symbol: str, type: str = '', side: str = '', amount: float = 1,
price: float = 1, taker_or_maker: str = 'maker') -> float:
price: float = 1, taker_or_maker: MakerTaker = 'maker') -> float:
try:
if self._config['dry_run'] and self._config.get('fee', None) is not None:
return self._config['fee']
@ -1631,27 +1648,35 @@ class Exchange:
and order['fee']['cost'] is not None
)
def calculate_fee_rate(self, order: Dict) -> Optional[float]:
def calculate_fee_rate(
self, fee: Dict, symbol: str, cost: float, amount: float) -> Optional[float]:
"""
Calculate fee rate if it's not given by the exchange.
:param order: Order or trade (one trade) dict
:param fee: ccxt Fee dict - must contain cost / currency / rate
:param symbol: Symbol of the order
:param cost: Total cost of the order
:param amount: Amount of the order
"""
if order['fee'].get('rate') is not None:
return order['fee'].get('rate')
fee_curr = order['fee']['currency']
if fee.get('rate') is not None:
return fee.get('rate')
fee_curr = fee.get('currency')
if fee_curr is None:
return None
fee_cost = float(fee['cost'])
if self._ft_has['fee_cost_in_contracts']:
# Convert cost via "contracts" conversion
fee_cost = self._contracts_to_amount(symbol, fee['cost'])
# Calculate fee based on order details
if fee_curr in self.get_pair_base_currency(order['symbol']):
if fee_curr == self.get_pair_base_currency(symbol):
# Base currency - divide by amount
return round(
order['fee']['cost'] / safe_value_fallback2(order, order, 'filled', 'amount'), 8)
elif fee_curr in self.get_pair_quote_currency(order['symbol']):
return round(fee_cost / amount, 8)
elif fee_curr == self.get_pair_quote_currency(symbol):
# Quote currency - divide by cost
return round(self._contracts_to_amount(
order['symbol'], order['fee']['cost']) / order['cost'],
8) if order['cost'] else None
return round(fee_cost / cost, 8) if cost else None
else:
# If Fee currency is a different currency
if not order['cost']:
if not cost:
# If cost is None or 0.0 -> falsy, return None
return None
try:
@ -1663,19 +1688,28 @@ class Exchange:
fee_to_quote_rate = self._config['exchange'].get('unknown_fee_rate', None)
if not fee_to_quote_rate:
return None
return round((self._contracts_to_amount(
order['symbol'], order['fee']['cost']) * fee_to_quote_rate) / order['cost'], 8)
return round((fee_cost * fee_to_quote_rate) / cost, 8)
def extract_cost_curr_rate(self, order: Dict) -> Tuple[float, str, Optional[float]]:
def extract_cost_curr_rate(self, fee: Dict, symbol: str, cost: float,
amount: float) -> Tuple[float, str, Optional[float]]:
"""
Extract tuple of cost, currency, rate.
Requires order_has_fee to run first!
:param order: Order or trade (one trade) dict
:param fee: ccxt Fee dict - must contain cost / currency / rate
:param symbol: Symbol of the order
:param cost: Total cost of the order
:param amount: Amount of the order
:return: Tuple with cost, currency, rate of the given fee dict
"""
return (order['fee']['cost'],
order['fee']['currency'],
self.calculate_fee_rate(order))
return (float(fee['cost']),
fee['currency'],
self.calculate_fee_rate(
fee,
symbol,
cost,
amount
)
)
# Historic data

View File

@ -1,12 +1,13 @@
""" Gate.io exchange subclass """
import logging
from datetime import datetime
from typing import Dict, List, Optional, Tuple
from typing import Any, Dict, List, Optional, Tuple
from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
from freqtrade.misc import safe_value_fallback2
logger = logging.getLogger(__name__)
@ -32,7 +33,9 @@ class Gateio(Exchange):
}
_ft_has_futures: Dict = {
"needs_trading_fees": True
"needs_trading_fees": True,
"fee_cost_in_contracts": False, # Set explicitly to false for clarity
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
@ -95,12 +98,29 @@ class Gateio(Exchange):
}
return trades
def get_order_id_conditional(self, order: Dict[str, Any]) -> str:
if self.trading_mode == TradingMode.FUTURES:
return safe_value_fallback2(order, order, 'id_stop', 'id')
return order['id']
def fetch_stoploss_order(self, order_id: str, pair: str, params: Dict = {}) -> Dict:
return self.fetch_order(
order = self.fetch_order(
order_id=order_id,
pair=pair,
params={'stop': True}
)
if self.trading_mode == TradingMode.FUTURES:
if order['status'] == 'closed':
# Places a real order - which we need to fetch explicitly.
new_orderid = order.get('info', {}).get('trade_id')
if new_orderid:
order1 = self.fetch_order(order_id=new_orderid, pair=pair, params=params)
order1['id_stop'] = order1['id']
order1['id'] = order_id
order1['stopPrice'] = order.get('stopPrice')
return order1
return order
def cancel_stoploss_order(self, order_id: str, pair: str, params: Dict = {}) -> Dict:
return self.cancel_order(

View File

@ -28,6 +28,7 @@ class Okx(Exchange):
}
_ft_has_futures: Dict = {
"tickers_have_quoteVolume": False,
"fee_cost_in_contracts": True,
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [

View File

@ -332,6 +332,8 @@ class FreqtradeBot(LoggingMixin):
if not trade.is_open and not trade.fee_updated(trade.exit_side):
# Get sell fee
order = trade.select_order(trade.exit_side, False)
if not order:
order = trade.select_order('stoploss', False)
if order:
logger.info(
f"Updating {trade.exit_side}-fee on trade {trade}"
@ -814,7 +816,7 @@ class FreqtradeBot(LoggingMixin):
pair=pair, current_time=datetime.now(timezone.utc),
current_rate=enter_limit_requested, proposed_stake=stake_amount,
min_stake=min_stake_amount, max_stake=min(max_stake_amount, stake_available),
entry_tag=entry_tag, side=trade_side
leverage=leverage, entry_tag=entry_tag, side=trade_side
)
stake_amount = self.wallets.validate_stake_amount(
@ -1742,7 +1744,8 @@ class FreqtradeBot(LoggingMixin):
trade_base_currency = self.exchange.get_pair_base_currency(trade.pair)
# use fee from order-dict if possible
if self.exchange.order_has_fee(order):
fee_cost, fee_currency, fee_rate = self.exchange.extract_cost_curr_rate(order)
fee_cost, fee_currency, fee_rate = self.exchange.extract_cost_curr_rate(
order['fee'], order['symbol'], order['cost'], order_obj.safe_filled)
logger.info(f"Fee for Trade {trade} [{order_obj.ft_order_side}]: "
f"{fee_cost:.8g} {fee_currency} - rate: {fee_rate}")
if fee_rate is None or fee_rate < 0.02:
@ -1780,7 +1783,15 @@ class FreqtradeBot(LoggingMixin):
for exectrade in trades:
amount += exectrade['amount']
if self.exchange.order_has_fee(exectrade):
fee_cost_, fee_currency, fee_rate_ = self.exchange.extract_cost_curr_rate(exectrade)
# Prefer singular fee
fees = [exectrade['fee']]
else:
fees = exectrade.get('fees', [])
for fee in fees:
fee_cost_, fee_currency, fee_rate_ = self.exchange.extract_cost_curr_rate(
fee, exectrade['symbol'], exectrade['cost'], exectrade['amount']
)
fee_cost += fee_cost_
if fee_rate_ is not None:
fee_rate_array.append(fee_rate_)

View File

@ -722,7 +722,7 @@ class Backtesting:
pair=pair, current_time=current_time, current_rate=propose_rate,
proposed_stake=stake_amount, min_stake=min_stake_amount,
max_stake=min(stake_available, max_stake_amount),
entry_tag=entry_tag, side=direction)
leverage=leverage, entry_tag=entry_tag, side=direction)
stake_amount_val = self.wallets.validate_stake_amount(
pair=pair,

View File

@ -6,6 +6,7 @@ This module contains the hyperopt logic
import logging
import random
import sys
import warnings
from datetime import datetime, timezone
from math import ceil
@ -17,6 +18,7 @@ import rapidjson
from colorama import Fore, Style
from colorama import init as colorama_init
from joblib import Parallel, cpu_count, delayed, dump, load, wrap_non_picklable_objects
from joblib.externals import cloudpickle
from pandas import DataFrame
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN
@ -87,6 +89,7 @@ class Hyperopt:
self.backtesting._set_strategy(self.backtesting.strategylist[0])
self.custom_hyperopt.strategy = self.backtesting.strategy
self.hyperopt_pickle_magic(self.backtesting.strategy.__class__.__bases__)
self.custom_hyperoptloss: IHyperOptLoss = HyperOptLossResolver.load_hyperoptloss(
self.config)
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
@ -137,6 +140,17 @@ class Hyperopt:
logger.info(f"Removing `{p}`.")
p.unlink()
def hyperopt_pickle_magic(self, bases) -> None:
"""
Hyperopt magic to allow strategy inheritance across files.
For this to properly work, we need to register the module of the imported class
to pickle as value.
"""
for modules in bases:
if modules.__name__ != 'IStrategy':
cloudpickle.register_pickle_by_value(sys.modules[modules.__module__])
self.hyperopt_pickle_magic(modules.__bases__)
def _get_params_dict(self, dimensions: List[Dimension], raw_params: List[Any]) -> Dict:
# Ensure the number of dimensions match

View File

@ -821,7 +821,7 @@ class LocalTrade():
self.open_rate = total_stake / total_amount
self.stake_amount = total_stake / (self.leverage or 1.0)
self.amount = total_amount
self.fee_open_cost = self.fee_open * self.stake_amount
self.fee_open_cost = self.fee_open * total_stake
self.recalc_open_trade_value()
if self.stop_loss_pct is not None and self.open_rate is not None:
self.adjust_stop_loss(self.open_rate, self.stop_loss_pct)

View File

@ -255,18 +255,18 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
"""
# Trades can be empty
if trades is not None and len(trades) > 0:
# Create description for sell summarizing the trade
# Create description for exit summarizing the trade
trades['desc'] = trades.apply(
lambda row: f"{row['profit_ratio']:.2%}, " +
(f"{row['enter_tag']}, " if row['enter_tag'] is not None else "") +
f"{row['exit_reason']}, " +
f"{row['trade_duration']} min",
axis=1)
trade_buys = go.Scatter(
trade_entries = go.Scatter(
x=trades["open_date"],
y=trades["open_rate"],
mode='markers',
name='Trade buy',
name='Trade entry',
text=trades["desc"],
marker=dict(
symbol='circle-open',
@ -277,12 +277,12 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
)
)
trade_sells = go.Scatter(
trade_exits = go.Scatter(
x=trades.loc[trades['profit_ratio'] > 0, "close_date"],
y=trades.loc[trades['profit_ratio'] > 0, "close_rate"],
text=trades.loc[trades['profit_ratio'] > 0, "desc"],
mode='markers',
name='Sell - Profit',
name='Exit - Profit',
marker=dict(
symbol='square-open',
size=11,
@ -290,12 +290,12 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
color='green'
)
)
trade_sells_loss = go.Scatter(
trade_exits_loss = go.Scatter(
x=trades.loc[trades['profit_ratio'] <= 0, "close_date"],
y=trades.loc[trades['profit_ratio'] <= 0, "close_rate"],
text=trades.loc[trades['profit_ratio'] <= 0, "desc"],
mode='markers',
name='Sell - Loss',
name='Exit - Loss',
marker=dict(
symbol='square-open',
size=11,
@ -303,9 +303,9 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
color='red'
)
)
fig.add_trace(trade_buys, 1, 1)
fig.add_trace(trade_sells, 1, 1)
fig.add_trace(trade_sells_loss, 1, 1)
fig.add_trace(trade_entries, 1, 1)
fig.add_trace(trade_exits, 1, 1)
fig.add_trace(trade_exits_loss, 1, 1)
else:
logger.warning("No trades found.")
return fig
@ -444,7 +444,7 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
Generate the graph from the data generated by Backtesting or from DB
Volume will always be ploted in row2, so Row 1 and 3 are to our disposal for custom indicators
:param pair: Pair to Display on the graph
:param data: OHLCV DataFrame containing indicators and buy/sell signals
:param data: OHLCV DataFrame containing indicators and entry/exit signals
:param trades: All trades created
:param indicators1: List containing Main plot indicators
:param indicators2: List containing Sub plot indicators

View File

@ -243,6 +243,22 @@ class Telegram(RPCHandler):
"""
return f"{msg['exchange']}{' (dry)' if self._config['dry_run'] else ''}"
def _add_analyzed_candle(self, pair: str) -> str:
candle_val = self._config['telegram'].get(
'notification_settings', {}).get('show_candle', 'off')
if candle_val != 'off':
if candle_val == 'ohlc':
analyzed_df, _ = self._rpc._freqtrade.dataprovider.get_analyzed_dataframe(
pair, self._config['timeframe'])
candle = analyzed_df.iloc[-1].squeeze() if len(analyzed_df) > 0 else None
if candle is not None:
return (
f"*Candle OHLC*: `{candle['open']}, {candle['high']}, "
f"{candle['low']}, {candle['close']}`\n"
)
return ''
def _format_entry_msg(self, msg: Dict[str, Any]) -> str:
if self._rpc._fiat_converter:
msg['stake_amount_fiat'] = self._rpc._fiat_converter.convert_amount(
@ -259,6 +275,7 @@ class Telegram(RPCHandler):
f" {entry_side['entered'] if is_fill else entry_side['enter']} {msg['pair']}"
f" (#{msg['trade_id']})\n"
)
message += self._add_analyzed_candle(msg['pair'])
message += f"*Enter Tag:* `{msg['enter_tag']}`\n" if msg.get('enter_tag') else ""
message += f"*Amount:* `{msg['amount']:.8f}`\n"
if msg.get('leverage') and msg.get('leverage', 1.0) != 1.0:
@ -306,6 +323,7 @@ class Telegram(RPCHandler):
message = (
f"{msg['emoji']} *{self._exchange_from_msg(msg)}:* "
f"{'Exited' if is_fill else 'Exiting'} {msg['pair']} (#{msg['trade_id']})\n"
f"{self._add_analyzed_candle(msg['pair'])}"
f"*{'Profit' if is_fill else 'Unrealized Profit'}:* "
f"`{msg['profit_ratio']:.2%}{msg['profit_extra']}`\n"
f"*Enter Tag:* `{msg['enter_tag']}`\n"

View File

@ -191,6 +191,7 @@ def detect_parameters(
and attr.category is not None and attr.category != category):
raise OperationalException(
f'Inconclusive parameter name {attr_name}, category: {attr.category}.')
if (category == attr.category or
(attr_name.startswith(category + '_') and attr.category is None)):
yield attr_name, attr

View File

@ -442,7 +442,8 @@ class IStrategy(ABC, HyperStrategyMixin):
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: Optional[float], max_stake: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
leverage: float, entry_tag: Optional[str], side: str,
**kwargs) -> float:
"""
Customize stake size for each new trade.
@ -452,6 +453,7 @@ class IStrategy(ABC, HyperStrategyMixin):
:param proposed_stake: A stake amount proposed by the bot.
:param min_stake: Minimal stake size allowed by exchange.
:param max_stake: Balance available for trading.
:param leverage: Leverage selected for this trade.
:param entry_tag: Optional entry_tag (buy_tag) if provided with the buy signal.
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:return: A stake size, which is between min_stake and max_stake.

View File

@ -51,11 +51,13 @@
"source": [
"# Load data using values set above\n",
"from freqtrade.data.history import load_pair_history\n",
"from freqtrade.enums import CandleType\n",
"\n",
"candles = load_pair_history(datadir=data_location,\n",
" timeframe=config[\"timeframe\"],\n",
" pair=pair,\n",
" data_format = \"hdf5\",\n",
" candle_type=CandleType.SPOT,\n",
" )\n",
"\n",
"# Confirm success\n",

View File

@ -79,9 +79,10 @@ def custom_exit_price(self, pair: str, trade: 'Trade',
"""
return proposed_rate
def custom_stake_amount(self, pair: str, current_time: 'datetime', current_rate: float,
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: Optional[float], max_stake: float,
entry_tag: 'Optional[str]', side: str, **kwargs) -> float:
leverage: float, entry_tag: Optional[str], side: str,
**kwargs) -> float:
"""
Customize stake size for each new trade.
@ -91,6 +92,7 @@ def custom_stake_amount(self, pair: str, current_time: 'datetime', current_rate:
:param proposed_stake: A stake amount proposed by the bot.
:param min_stake: Minimal stake size allowed by exchange.
:param max_stake: Balance available for trading.
:param leverage: Leverage selected for this trade.
:param entry_tag: Optional entry_tag (buy_tag) if provided with the buy signal.
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:return: A stake size, which is between min_stake and max_stake.

View File

@ -8,11 +8,11 @@ coveralls==3.3.1
flake8==4.0.1
flake8-tidy-imports==4.8.0
mypy==0.961
pre-commit==2.19.0
pre-commit==2.20.0
pytest==7.1.2
pytest-asyncio==0.18.3
pytest-asyncio==0.19.0
pytest-cov==3.0.0
pytest-mock==3.8.1
pytest-mock==3.8.2
pytest-random-order==1.0.4
isort==5.10.1
# For datetime mocking
@ -24,6 +24,6 @@ nbconvert==6.5.0
# mypy types
types-cachetools==5.2.1
types-filelock==3.2.7
types-requests==2.28.0
types-requests==2.28.1
types-tabulate==0.8.11
types-python-dateutil==2.8.18

View File

@ -1,18 +1,18 @@
numpy==1.23.0
numpy==1.23.1
pandas==1.4.3
pandas-ta==0.3.14b
ccxt==1.89.96
ccxt==1.90.89
# Pin cryptography for now due to rust build errors with piwheels
cryptography==37.0.2
cryptography==37.0.4
aiohttp==3.8.1
SQLAlchemy==1.4.39
python-telegram-bot==13.13
arrow==1.2.2
cachetools==4.2.2
requests==2.28.1
urllib3==1.26.9
jsonschema==4.6.1
urllib3==1.26.10
jsonschema==4.7.2
TA-Lib==0.4.24
technical==1.3.0
tabulate==0.8.10
@ -26,15 +26,15 @@ joblib==1.1.0
py_find_1st==1.1.5
# Load ticker files 30% faster
python-rapidjson==1.6
python-rapidjson==1.8
# Properly format api responses
orjson==3.7.6
orjson==3.7.7
# Notify systemd
sdnotify==0.3.2
# API Server
fastapi==0.78.0
fastapi==0.79.0
uvicorn==0.18.2
pyjwt==2.4.0
aiofiles==0.8.0

View File

@ -112,11 +112,8 @@ def patch_exchange(
mock_supported_modes=True
) -> None:
mocker.patch('freqtrade.exchange.Exchange._load_async_markets', MagicMock(return_value={}))
mocker.patch('freqtrade.exchange.Exchange.validate_pairs', MagicMock())
mocker.patch('freqtrade.exchange.Exchange.validate_config', MagicMock())
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
mocker.patch('freqtrade.exchange.Exchange.validate_ordertypes', MagicMock())
mocker.patch('freqtrade.exchange.Exchange.validate_stakecurrency', MagicMock())
mocker.patch('freqtrade.exchange.Exchange.validate_pricing')
mocker.patch('freqtrade.exchange.Exchange.id', PropertyMock(return_value=id))
mocker.patch('freqtrade.exchange.Exchange.name', PropertyMock(return_value=id.title()))
mocker.patch('freqtrade.exchange.Exchange.precisionMode', PropertyMock(return_value=2))
@ -1694,6 +1691,7 @@ def limit_buy_order_old_partial():
'price': 0.00001099,
'amount': 90.99181073,
'filled': 23.0,
'cost': 90.99181073 * 23.0,
'remaining': 67.99181073,
'status': 'open'
}
@ -3165,60 +3163,46 @@ def leverage_tiers():
"AAVE/USDT": [
{
'min': 0,
'max': 50000,
'max': 5000,
'mmr': 0.01,
'lev': 50,
'maintAmt': 0.0
},
{
'min': 50000,
'max': 250000,
'min': 5000,
'max': 25000,
'mmr': 0.02,
'lev': 25,
'maintAmt': 500.0
'maintAmt': 75.0
},
{
'min': 25000,
'max': 100000,
'mmr': 0.05,
'lev': 10,
'maintAmt': 700.0
},
{
'min': 100000,
'max': 250000,
'mmr': 0.1,
'lev': 5,
'maintAmt': 5700.0
},
{
'min': 250000,
'max': 1000000,
'mmr': 0.05,
'lev': 10,
'maintAmt': 8000.0
},
{
'min': 1000000,
'max': 2000000,
'mmr': 0.1,
'lev': 5,
'maintAmt': 58000.0
},
{
'min': 2000000,
'max': 5000000,
'mmr': 0.125,
'lev': 4,
'maintAmt': 108000.0
},
{
'min': 5000000,
'max': 10000000,
'mmr': 0.1665,
'lev': 3,
'maintAmt': 315500.0
'lev': 2,
'maintAmt': 11950.0
},
{
'min': 10000000,
'max': 20000000,
'mmr': 0.25,
'lev': 2,
'maintAmt': 1150500.0
'max': 50000000,
'mmr': 0.5,
'lev': 1,
'maintAmt': 386950.0
},
{
"min": 20000000,
"max": 50000000,
"mmr": 0.5,
"lev": 1,
"maintAmt": 6150500.0
}
],
"ADA/BUSD": [
{

View File

@ -153,6 +153,25 @@ class TestCCXTExchange():
assert isinstance(markets[pair], dict)
assert exchange.market_is_spot(markets[pair])
def test_has_validations(self, exchange):
exchange, exchangename = exchange
exchange.validate_ordertypes({
'entry': 'limit',
'exit': 'limit',
'stoploss': 'limit',
})
if exchangename == 'gateio':
# gateio doesn't have market orders on spot
return
exchange.validate_ordertypes({
'entry': 'market',
'exit': 'market',
'stoploss': 'market',
})
def test_load_markets_futures(self, exchange_futures):
exchange, exchangename = exchange_futures
if not exchange:

View File

@ -1135,7 +1135,58 @@ def test_create_dry_run_order(default_conf, mocker, side, exchange_name, leverag
assert order["symbol"] == "ETH/BTC"
assert order["amount"] == 1
assert order["leverage"] == leverage
assert order["cost"] == 1 * 200 / leverage
assert order["cost"] == 1 * 200
@pytest.mark.parametrize('side,is_short,order_reason', [
("buy", False, "entry"),
("sell", False, "exit"),
("buy", True, "exit"),
("sell", True, "entry"),
])
@pytest.mark.parametrize("order_type,price_side,fee", [
("limit", "same", 1.0),
("limit", "other", 2.0),
("market", "same", 2.0),
("market", "other", 2.0),
])
def test_create_dry_run_order_fees(
default_conf,
mocker,
side,
order_type,
is_short,
order_reason,
price_side,
fee,
):
mocker.patch(
'freqtrade.exchange.Exchange.get_fee',
side_effect=lambda symbol, taker_or_maker: 2.0 if taker_or_maker == 'taker' else 1.0
)
mocker.patch('freqtrade.exchange.Exchange._is_dry_limit_order_filled',
return_value=price_side == 'other')
exchange = get_patched_exchange(mocker, default_conf)
order = exchange.create_dry_run_order(
pair='LTC/USDT',
ordertype=order_type,
side=side,
amount=10,
rate=2.0,
leverage=1.0
)
if price_side == 'other' or order_type == 'market':
assert order['fee']['rate'] == fee
return
else:
assert order['fee'] is None
mocker.patch('freqtrade.exchange.Exchange._is_dry_limit_order_filled',
return_value=price_side != 'other')
order1 = exchange.fetch_dry_run_order(order['id'])
assert order1['fee']['rate'] == fee
@pytest.mark.parametrize("side,startprice,endprice", [
@ -3544,7 +3595,7 @@ def test_order_has_fee(order, expected) -> None:
def test_extract_cost_curr_rate(mocker, default_conf, order, expected) -> None:
mocker.patch('freqtrade.exchange.Exchange.calculate_fee_rate', MagicMock(return_value=0.01))
ex = get_patched_exchange(mocker, default_conf)
assert ex.extract_cost_curr_rate(order) == expected
assert ex.extract_cost_curr_rate(order['fee'], order['symbol'], cost=20, amount=1) == expected
@pytest.mark.parametrize("order,unknown_fee_rate,expected", [
@ -3582,6 +3633,9 @@ def test_extract_cost_curr_rate(mocker, default_conf, order, expected) -> None:
'fee': {'currency': 'POINT', 'cost': 2.0, 'rate': None}}, 1, 4.0),
({'symbol': 'POINT/BTC', 'amount': 0.04, 'cost': 0.5,
'fee': {'currency': 'POINT', 'cost': 2.0, 'rate': None}}, 2, 8.0),
# Missing currency
({'symbol': 'ETH/BTC', 'amount': 0.04, 'cost': 0.05,
'fee': {'currency': None, 'cost': 0.005}}, None, None),
])
def test_calculate_fee_rate(mocker, default_conf, order, expected, unknown_fee_rate) -> None:
mocker.patch('freqtrade.exchange.Exchange.fetch_ticker', return_value={'last': 0.081})
@ -3590,7 +3644,8 @@ def test_calculate_fee_rate(mocker, default_conf, order, expected, unknown_fee_r
ex = get_patched_exchange(mocker, default_conf)
assert ex.calculate_fee_rate(order) == expected
assert ex.calculate_fee_rate(order['fee'], order['symbol'],
cost=order['cost'], amount=order['amount']) == expected
@pytest.mark.parametrize('retrycount,max_retries,expected', [

View File

@ -53,6 +53,25 @@ def test_fetch_stoploss_order_gateio(default_conf, mocker):
assert fetch_order_mock.call_args_list[0][1]['pair'] == 'ETH/BTC'
assert fetch_order_mock.call_args_list[0][1]['params'] == {'stop': True}
default_conf['trading_mode'] = 'futures'
default_conf['margin_mode'] = 'isolated'
exchange = get_patched_exchange(mocker, default_conf, id='gateio')
exchange.fetch_order = MagicMock(return_value={
'status': 'closed',
'id': '1234',
'stopPrice': 5.62,
'info': {
'trade_id': '222555'
}
})
exchange.fetch_stoploss_order('1234', 'ETH/BTC')
assert exchange.fetch_order.call_count == 2
assert exchange.fetch_order.call_args_list[0][1]['order_id'] == '1234'
assert exchange.fetch_order.call_args_list[1][1]['order_id'] == '222555'
def test_cancel_stoploss_order_gateio(default_conf, mocker):
exchange = get_patched_exchange(mocker, default_conf, id='gateio')

View File

@ -90,28 +90,6 @@ def load_data_test(what, testdatadir):
fill_missing=True)}
def simple_backtest(config, contour, mocker, testdatadir) -> None:
patch_exchange(mocker)
config['timeframe'] = '1m'
backtesting = Backtesting(config)
backtesting._set_strategy(backtesting.strategylist[0])
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
assert isinstance(processed, dict)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=1,
position_stacking=False,
enable_protections=config.get('enable_protections', False),
)
# results :: <class 'pandas.core.frame.DataFrame'>
return results
# FIX: fixturize this?
def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC'):
data = history.load_data(datadir=datadir, timeframe='1m', pairs=[pair])
@ -942,6 +920,7 @@ def test_backtest_dataprovider_analyzed_df(default_conf, fee, mocker, testdatadi
def test_backtest_pricecontours_protections(default_conf, fee, mocker, testdatadir) -> None:
# While this test IS a copy of test_backtest_pricecontours, it's needed to ensure
# results do not carry-over to the next run, which is not given by using parametrize.
patch_exchange(mocker)
default_conf['protections'] = [
{
"method": "CooldownPeriod",
@ -949,6 +928,7 @@ def test_backtest_pricecontours_protections(default_conf, fee, mocker, testdatad
}]
default_conf['enable_protections'] = True
default_conf['timeframe'] = '1m'
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch("freqtrade.exchange.Exchange.get_max_pair_stake_amount", return_value=float('inf'))
@ -959,12 +939,27 @@ def test_backtest_pricecontours_protections(default_conf, fee, mocker, testdatad
['sine', 9],
['raise', 10],
]
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
# While entry-signals are unrealistic, running backtesting
# over and over again should not cause different results
for [contour, numres] in tests:
# Debug output for random test failure
print(f"{contour}, {numres}")
assert len(simple_backtest(default_conf, contour, mocker, testdatadir)['results']) == numres
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
assert isinstance(processed, dict)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=1,
position_stacking=False,
enable_protections=default_conf.get('enable_protections', False),
)
assert len(results['results']) == numres
@pytest.mark.parametrize('protections,contour,expected', [
@ -990,7 +985,25 @@ def test_backtest_pricecontours(default_conf, fee, mocker, testdatadir,
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
# While entry-signals are unrealistic, running backtesting
# over and over again should not cause different results
assert len(simple_backtest(default_conf, contour, mocker, testdatadir)['results']) == expected
patch_exchange(mocker)
default_conf['timeframe'] = '1m'
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
assert isinstance(processed, dict)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=1,
position_stacking=False,
enable_protections=default_conf.get('enable_protections', False),
)
assert len(results['results']) == expected
def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):

View File

@ -1,7 +1,7 @@
# pragma pylint: disable=missing-docstring,W0212,C0103
from datetime import datetime, timedelta
from pathlib import Path
from unittest.mock import ANY, MagicMock
from unittest.mock import ANY, MagicMock, PropertyMock
import pandas as pd
import pytest
@ -18,8 +18,8 @@ from freqtrade.optimize.hyperopt_tools import HyperoptTools
from freqtrade.optimize.optimize_reports import generate_strategy_stats
from freqtrade.optimize.space import SKDecimal
from freqtrade.strategy import IntParameter
from tests.conftest import (CURRENT_TEST_STRATEGY, get_args, log_has, log_has_re, patch_exchange,
patched_configuration_load_config_file)
from tests.conftest import (CURRENT_TEST_STRATEGY, get_args, get_markets, log_has, log_has_re,
patch_exchange, patched_configuration_load_config_file)
def generate_result_metrics():
@ -855,7 +855,7 @@ def test_in_strategy_auto_hyperopt(mocker, hyperopt_conf, tmpdir, fee) -> None:
'strategy': 'HyperoptableStrategy',
'user_data_dir': Path(tmpdir),
'hyperopt_random_state': 42,
'spaces': ['all']
'spaces': ['all'],
})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.exchange.get_max_leverage = MagicMock(return_value=1.0)
@ -883,6 +883,45 @@ def test_in_strategy_auto_hyperopt(mocker, hyperopt_conf, tmpdir, fee) -> None:
hyperopt.get_optimizer([], 2)
def test_in_strategy_auto_hyperopt_with_parallel(mocker, hyperopt_conf, tmpdir, fee) -> None:
mocker.patch('freqtrade.exchange.Exchange.validate_config', MagicMock())
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch('freqtrade.exchange.Exchange._load_markets')
mocker.patch('freqtrade.exchange.Exchange.markets',
PropertyMock(return_value=get_markets()))
(Path(tmpdir) / 'hyperopt_results').mkdir(parents=True)
# No hyperopt needed
hyperopt_conf.update({
'strategy': 'HyperoptableStrategy',
'user_data_dir': Path(tmpdir),
'hyperopt_random_state': 42,
'spaces': ['all'],
# Enforce parallelity
'epochs': 2,
'hyperopt_jobs': 2,
'fee': fee.return_value,
})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.exchange.get_max_leverage = lambda *x, **xx: 1.0
hyperopt.backtesting.exchange.get_min_pair_stake_amount = lambda *x, **xx: 1.0
hyperopt.backtesting.exchange.get_max_pair_stake_amount = lambda *x, **xx: 100.0
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
assert isinstance(hyperopt.backtesting.strategy.buy_rsi, IntParameter)
assert hyperopt.backtesting.strategy.bot_loop_started is True
assert hyperopt.backtesting.strategy.buy_rsi.in_space is True
assert hyperopt.backtesting.strategy.buy_rsi.value == 35
assert hyperopt.backtesting.strategy.sell_rsi.value == 74
assert hyperopt.backtesting.strategy.protection_cooldown_lookback.value == 30
buy_rsi_range = hyperopt.backtesting.strategy.buy_rsi.range
assert isinstance(buy_rsi_range, range)
# Range from 0 - 50 (inclusive)
assert len(list(buy_rsi_range)) == 51
hyperopt.start()
def test_SKDecimal():
space = SKDecimal(1, 2, decimals=2)
assert 1.5 in space

View File

@ -1398,6 +1398,7 @@ def test_api_strategies(botclient):
assert rc.json() == {'strategies': [
'HyperoptableStrategy',
'HyperoptableStrategyV2',
'InformativeDecoratorTest',
'StrategyTestV2',
'StrategyTestV3',

View File

@ -12,6 +12,7 @@ from unittest.mock import ANY, MagicMock
import arrow
import pytest
from pandas import DataFrame
from telegram import Chat, Message, ReplyKeyboardMarkup, Update
from telegram.error import BadRequest, NetworkError, TelegramError
@ -1655,8 +1656,17 @@ def test_show_config_handle(default_conf, update, mocker) -> None:
(RPCMessageType.ENTRY, 'Long', 'long_signal_01', 1.0),
(RPCMessageType.ENTRY, 'Long', 'long_signal_01', 5.0),
(RPCMessageType.ENTRY, 'Short', 'short_signal_01', 2.0)])
def test_send_msg_buy_notification(default_conf, mocker, caplog, message_type,
def test_send_msg_enter_notification(default_conf, mocker, caplog, message_type,
enter, enter_signal, leverage) -> None:
default_conf['telegram']['notification_settings']['show_candle'] = 'ohlc'
df = DataFrame({
'open': [1.1],
'high': [2.2],
'low': [1.0],
'close': [1.5],
})
mocker.patch('freqtrade.data.dataprovider.DataProvider.get_analyzed_dataframe',
return_value=(df, 1))
msg = {
'type': message_type,
@ -1674,6 +1684,7 @@ def test_send_msg_buy_notification(default_conf, mocker, caplog, message_type,
'fiat_currency': 'USD',
'current_rate': 1.099e-05,
'amount': 1333.3333333333335,
'analyzed_candle': {'open': 1.1, 'high': 2.2, 'low': 1.0, 'close': 1.5},
'open_date': arrow.utcnow().shift(hours=-1)
}
telegram, freqtradebot, msg_mock = get_telegram_testobject(mocker, default_conf)
@ -1683,6 +1694,7 @@ def test_send_msg_buy_notification(default_conf, mocker, caplog, message_type,
assert msg_mock.call_args[0][0] == (
f'\N{LARGE BLUE CIRCLE} *Binance (dry):* {enter} ETH/BTC (#1)\n'
'*Candle OHLC*: `1.1, 2.2, 1.0, 1.5`\n'
f'*Enter Tag:* `{enter_signal}`\n'
'*Amount:* `1333.33333333`\n'
f'{leverage_text}'
@ -1710,7 +1722,8 @@ def test_send_msg_buy_notification(default_conf, mocker, caplog, message_type,
@pytest.mark.parametrize('message_type,enter_signal', [
(RPCMessageType.ENTRY_CANCEL, 'long_signal_01'),
(RPCMessageType.ENTRY_CANCEL, 'short_signal_01')])
def test_send_msg_buy_cancel_notification(default_conf, mocker, message_type, enter_signal) -> None:
def test_send_msg_enter_cancel_notification(
default_conf, mocker, message_type, enter_signal) -> None:
telegram, _, msg_mock = get_telegram_testobject(mocker, default_conf)

View File

@ -1,13 +1,13 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
from pandas import DataFrame
from strategy_test_v2 import StrategyTestV2
from strategy_test_v3 import StrategyTestV3
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.strategy import BooleanParameter, DecimalParameter, IntParameter, RealParameter
class HyperoptableStrategy(StrategyTestV2):
class HyperoptableStrategy(StrategyTestV3):
"""
Default Strategy provided by freqtrade bot.
Please do not modify this strategy, it's intended for internal use only.

View File

@ -0,0 +1,54 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
from strategy_test_v2 import StrategyTestV2
from freqtrade.strategy import BooleanParameter, DecimalParameter, IntParameter, RealParameter
class HyperoptableStrategyV2(StrategyTestV2):
"""
Default Strategy provided by freqtrade bot.
Please do not modify this strategy, it's intended for internal use only.
Please look at the SampleStrategy in the user_data/strategy directory
or strategy repository https://github.com/freqtrade/freqtrade-strategies
for samples and inspiration.
"""
buy_params = {
'buy_rsi': 35,
# Intentionally not specified, so "default" is tested
# 'buy_plusdi': 0.4
}
sell_params = {
'sell_rsi': 74,
'sell_minusdi': 0.4
}
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space='buy')
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell')
sell_minusdi = DecimalParameter(low=0, high=1, default=0.5001, decimals=3, space='sell',
load=False)
protection_enabled = BooleanParameter(default=True)
protection_cooldown_lookback = IntParameter([0, 50], default=30)
@property
def protections(self):
prot = []
if self.protection_enabled.value:
prot.append({
"method": "CooldownPeriod",
"stop_duration_candles": self.protection_cooldown_lookback.value
})
return prot
bot_loop_started = False
def bot_loop_start(self):
self.bot_loop_started = True
def bot_start(self, **kwargs) -> None:
"""
Parameters can also be defined here ...
"""
self.buy_rsi = IntParameter([0, 50], default=30, space='buy')

View File

@ -916,7 +916,7 @@ def test_hyperopt_parameters():
def test_auto_hyperopt_interface(default_conf):
default_conf.update({'strategy': 'HyperoptableStrategy'})
default_conf.update({'strategy': 'HyperoptableStrategyV2'})
PairLocks.timeframe = default_conf['timeframe']
strategy = StrategyResolver.load_strategy(default_conf)
strategy.ft_bot_start()

View File

@ -34,7 +34,7 @@ def test_search_all_strategies_no_failed():
directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
assert isinstance(strategies, list)
assert len(strategies) == 6
assert len(strategies) == 7
assert isinstance(strategies[0], dict)
@ -42,10 +42,10 @@ def test_search_all_strategies_with_failed():
directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
assert isinstance(strategies, list)
assert len(strategies) == 7
assert len(strategies) == 8
# with enum_failed=True search_all_objects() shall find 2 good strategies
# and 1 which fails to load
assert len([x for x in strategies if x['class'] is not None]) == 6
assert len([x for x in strategies if x['class'] is not None]) == 7
assert len([x for x in strategies if x['class'] is None]) == 1

View File

@ -2060,8 +2060,9 @@ def test_update_trade_state_orderexception(mocker, default_conf_usdt, caplog) ->
@pytest.mark.parametrize("is_short", [False, True])
def test_update_trade_state_sell(
default_conf_usdt, trades_for_order, limit_order_open, limit_order, is_short, mocker,
default_conf_usdt, trades_for_order, limit_order_open, limit_order, is_short, mocker
):
buy_order = limit_order[entry_side(is_short)]
open_order = limit_order_open[exit_side(is_short)]
l_order = limit_order[exit_side(is_short)]
mocker.patch('freqtrade.exchange.Exchange.get_trades_for_order', return_value=trades_for_order)
@ -2088,6 +2089,9 @@ def test_update_trade_state_sell(
leverage=1,
is_short=is_short,
)
order = Order.parse_from_ccxt_object(buy_order, 'LTC/ETH', entry_side(is_short))
trade.orders.append(order)
order = Order.parse_from_ccxt_object(open_order, 'LTC/ETH', exit_side(is_short))
trade.orders.append(order)
assert order.status == 'open'
@ -2787,6 +2791,7 @@ def test_manage_open_orders_partial(
rpc_mock = patch_RPCManager(mocker)
open_trade.is_short = is_short
open_trade.leverage = leverage
open_trade.orders[0].ft_order_side = 'sell' if is_short else 'buy'
limit_buy_order_old_partial['id'] = open_trade.open_order_id
limit_buy_order_old_partial['side'] = 'sell' if is_short else 'buy'
limit_buy_canceled = deepcopy(limit_buy_order_old_partial)
@ -2872,6 +2877,7 @@ def test_manage_open_orders_partial_except(
limit_buy_order_old_partial_canceled, mocker
) -> None:
open_trade.is_short = is_short
open_trade.orders[0].ft_order_side = 'sell' if is_short else 'buy'
rpc_mock = patch_RPCManager(mocker)
limit_buy_order_old_partial_canceled['id'] = open_trade.open_order_id
limit_buy_order_old_partial['id'] = open_trade.open_order_id
@ -3626,7 +3632,7 @@ def test_execute_trade_exit_market_order(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker_usdt,
get_fee=fee,
_is_dry_limit_order_filled=MagicMock(return_value=False),
_is_dry_limit_order_filled=MagicMock(return_value=True),
)
patch_whitelist(mocker, default_conf_usdt)
freqtrade = FreqtradeBot(default_conf_usdt)
@ -3642,7 +3648,8 @@ def test_execute_trade_exit_market_order(
# Increase the price and sell it
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker_usdt_sell_up
fetch_ticker=ticker_usdt_sell_up,
_is_dry_limit_order_filled=MagicMock(return_value=False),
)
freqtrade.config['order_types']['exit'] = 'market'
@ -3655,7 +3662,7 @@ def test_execute_trade_exit_market_order(
assert not trade.is_open
assert trade.close_profit == profit_ratio
assert rpc_mock.call_count == 3
assert rpc_mock.call_count == 4
last_msg = rpc_mock.call_args_list[-2][0][0]
assert {
'type': RPCMessageType.EXIT,

View File

@ -72,7 +72,7 @@ def test_add_indicators(default_conf, testdatadir, caplog):
strategy = StrategyResolver.load_strategy(default_conf)
# Generate buy/sell signals and indicators
# Generate entry/exit signals and indicators
data = strategy.analyze_ticker(data, {'pair': pair})
fig = generate_empty_figure()
@ -113,7 +113,7 @@ def test_add_areas(default_conf, testdatadir, caplog):
ind_plain = {"macd": {"fill_to": "macdhist"}}
strategy = StrategyResolver.load_strategy(default_conf)
# Generate buy/sell signals and indicators
# Generate entry/exit signals and indicators
data = strategy.analyze_ticker(data, {'pair': pair})
fig = generate_empty_figure()
@ -165,24 +165,24 @@ def test_plot_trades(testdatadir, caplog):
fig = plot_trades(fig, trades)
figure = fig1.layout.figure
# Check buys - color, should be in first graph, ...
trade_buy = find_trace_in_fig_data(figure.data, 'Trade buy')
assert isinstance(trade_buy, go.Scatter)
assert trade_buy.yaxis == 'y'
assert len(trades) == len(trade_buy.x)
assert trade_buy.marker.color == 'cyan'
assert trade_buy.marker.symbol == 'circle-open'
assert trade_buy.text[0] == '3.99%, buy_tag, roi, 15 min'
# Check entry - color, should be in first graph, ...
trade_entries = find_trace_in_fig_data(figure.data, 'Trade entry')
assert isinstance(trade_entries, go.Scatter)
assert trade_entries.yaxis == 'y'
assert len(trades) == len(trade_entries.x)
assert trade_entries.marker.color == 'cyan'
assert trade_entries.marker.symbol == 'circle-open'
assert trade_entries.text[0] == '3.99%, buy_tag, roi, 15 min'
trade_sell = find_trace_in_fig_data(figure.data, 'Sell - Profit')
assert isinstance(trade_sell, go.Scatter)
assert trade_sell.yaxis == 'y'
assert len(trades.loc[trades['profit_ratio'] > 0]) == len(trade_sell.x)
assert trade_sell.marker.color == 'green'
assert trade_sell.marker.symbol == 'square-open'
assert trade_sell.text[0] == '3.99%, buy_tag, roi, 15 min'
trade_exit = find_trace_in_fig_data(figure.data, 'Exit - Profit')
assert isinstance(trade_exit, go.Scatter)
assert trade_exit.yaxis == 'y'
assert len(trades.loc[trades['profit_ratio'] > 0]) == len(trade_exit.x)
assert trade_exit.marker.color == 'green'
assert trade_exit.marker.symbol == 'square-open'
assert trade_exit.text[0] == '3.99%, buy_tag, roi, 15 min'
trade_sell_loss = find_trace_in_fig_data(figure.data, 'Sell - Loss')
trade_sell_loss = find_trace_in_fig_data(figure.data, 'Exit - Loss')
assert isinstance(trade_sell_loss, go.Scatter)
assert trade_sell_loss.yaxis == 'y'
assert len(trades.loc[trades['profit_ratio'] <= 0]) == len(trade_sell_loss.x)