diff --git a/docs/strategy_analysis_example.md b/docs/strategy_analysis_example.md index 4c938500c..27c620c3d 100644 --- a/docs/strategy_analysis_example.md +++ b/docs/strategy_analysis_example.md @@ -130,6 +130,39 @@ trades = load_backtest_data(backtest_dir) trades.groupby("pair")["sell_reason"].value_counts() ``` +## Plotting daily profit / equity line + + +```python +# Plotting equity line (starting with 0 on day 1 and adding daily profit for each backtested day) + +from freqtrade.configuration import Configuration +from freqtrade.data.btanalysis import load_backtest_data, load_backtest_stats +import plotly.express as px +import pandas as pd + +# strategy = 'SampleStrategy' +# config = Configuration.from_files(["user_data/config.json"]) +# backtest_dir = config["user_data_dir"] / "backtest_results" + +stats = load_backtest_stats(backtest_dir) +strategy_stats = stats['strategy'][strategy] + +equity = 0 +equity_daily = [] +for dp in strategy_stats['daily_profit']: + equity_daily.append(equity) + equity += float(dp) + +dates = pd.date_range(strategy_stats['backtest_start'], strategy_stats['backtest_end']) + +df = pd.DataFrame({'dates': dates,'equity_daily': equity_daily}) + +fig = px.line(df, x="dates", y="equity_daily") +fig.show() + +``` + ### Load live trading results into a pandas dataframe In case you did already some trading and want to analyze your performance diff --git a/freqtrade/optimize/optimize_reports.py b/freqtrade/optimize/optimize_reports.py index 2a794859d..89cf70437 100644 --- a/freqtrade/optimize/optimize_reports.py +++ b/freqtrade/optimize/optimize_reports.py @@ -261,6 +261,7 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]: 'winning_days': 0, 'draw_days': 0, 'losing_days': 0, + 'daily_profit_list': [], } daily_profit_rel = results.resample('1d', on='close_date')['profit_ratio'].sum() daily_profit = results.resample('1d', on='close_date')['profit_abs'].sum().round(10) @@ -271,6 +272,7 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]: winning_days = sum(daily_profit > 0) draw_days = sum(daily_profit == 0) losing_days = sum(daily_profit < 0) + daily_profit_list = daily_profit.tolist() return { 'backtest_best_day': best_rel, @@ -280,6 +282,7 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]: 'winning_days': winning_days, 'draw_days': draw_days, 'losing_days': losing_days, + 'daily_profit': daily_profit_list, } diff --git a/freqtrade/templates/strategy_analysis_example.ipynb b/freqtrade/templates/strategy_analysis_example.ipynb index 0bc593e2d..f3b0d8d03 100644 --- a/freqtrade/templates/strategy_analysis_example.ipynb +++ b/freqtrade/templates/strategy_analysis_example.ipynb @@ -188,6 +188,47 @@ "trades.groupby(\"pair\")[\"sell_reason\"].value_counts()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting daily profit / equity line" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Plotting equity line (starting with 0 on day 1 and adding daily profit for each backtested day)\n", + "\n", + "from freqtrade.configuration import Configuration\n", + "from freqtrade.data.btanalysis import load_backtest_data, load_backtest_stats\n", + "import plotly.express as px\n", + "import pandas as pd\n", + "\n", + "# strategy = 'SampleStrategy'\n", + "# config = Configuration.from_files([\"user_data/config.json\"])\n", + "# backtest_dir = config[\"user_data_dir\"] / \"backtest_results\"\n", + "\n", + "stats = load_backtest_stats(backtest_dir)\n", + "strategy_stats = stats['strategy'][strategy]\n", + "\n", + "equity = 0\n", + "equity_daily = []\n", + "for dp in strategy_stats['daily_profit']:\n", + " equity_daily.append(equity)\n", + " equity += float(dp)\n", + "\n", + "dates = pd.date_range(strategy_stats['backtest_start'], strategy_stats['backtest_end'])\n", + "\n", + "df = pd.DataFrame({'dates': dates,'equity_daily': equity_daily})\n", + "\n", + "fig = px.line(df, x=\"dates\", y=\"equity_daily\")\n", + "fig.show()\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -329,7 +370,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.8.5" }, "mimetype": "text/x-python", "name": "python",