Merge branch 'develop' into add-inlier-metric
This commit is contained in:
@@ -6,7 +6,7 @@ from abc import ABC, abstractmethod
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from threading import Lock
|
||||
from typing import Any, Dict, Tuple
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@@ -26,13 +26,6 @@ pd.options.mode.chained_assignment = None
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def threaded(fn):
|
||||
def wrapper(*args, **kwargs):
|
||||
threading.Thread(target=fn, args=args, kwargs=kwargs).start()
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
class IFreqaiModel(ABC):
|
||||
"""
|
||||
Class containing all tools for training and prediction in the strategy.
|
||||
@@ -69,6 +62,9 @@ class IFreqaiModel(ABC):
|
||||
self.first = True
|
||||
self.set_full_path()
|
||||
self.follow_mode: bool = self.freqai_info.get("follow_mode", False)
|
||||
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", False)
|
||||
if self.save_backtest_models:
|
||||
logger.info('Backtesting module configured to save all models.')
|
||||
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
|
||||
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
|
||||
self.scanning = False
|
||||
@@ -92,6 +88,9 @@ class IFreqaiModel(ABC):
|
||||
self.begin_time_train: float = 0
|
||||
self.base_tf_seconds = timeframe_to_seconds(self.config['timeframe'])
|
||||
|
||||
self._threads: List[threading.Thread] = []
|
||||
self._stop_event = threading.Event()
|
||||
|
||||
def assert_config(self, config: Dict[str, Any]) -> None:
|
||||
|
||||
if not config.get("freqai", {}):
|
||||
@@ -125,10 +124,9 @@ class IFreqaiModel(ABC):
|
||||
elif not self.follow_mode:
|
||||
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
|
||||
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
|
||||
with self.analysis_lock:
|
||||
dataframe = self.dk.use_strategy_to_populate_indicators(
|
||||
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
|
||||
)
|
||||
dataframe = self.dk.use_strategy_to_populate_indicators(
|
||||
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
|
||||
)
|
||||
dk = self.start_backtesting(dataframe, metadata, self.dk)
|
||||
|
||||
dataframe = dk.remove_features_from_df(dk.return_dataframe)
|
||||
@@ -146,15 +144,34 @@ class IFreqaiModel(ABC):
|
||||
self.model = None
|
||||
self.dk = None
|
||||
|
||||
@threaded
|
||||
def start_scanning(self, strategy: IStrategy) -> None:
|
||||
def shutdown(self):
|
||||
"""
|
||||
Cleans up threads on Shutdown, set stop event. Join threads to wait
|
||||
for current training iteration.
|
||||
"""
|
||||
logger.info("Stopping FreqAI")
|
||||
self._stop_event.set()
|
||||
|
||||
logger.info("Waiting on Training iteration")
|
||||
for _thread in self._threads:
|
||||
_thread.join()
|
||||
|
||||
def start_scanning(self, *args, **kwargs) -> None:
|
||||
"""
|
||||
Start `self._start_scanning` in a separate thread
|
||||
"""
|
||||
_thread = threading.Thread(target=self._start_scanning, args=args, kwargs=kwargs)
|
||||
self._threads.append(_thread)
|
||||
_thread.start()
|
||||
|
||||
def _start_scanning(self, strategy: IStrategy) -> None:
|
||||
"""
|
||||
Function designed to constantly scan pairs for retraining on a separate thread (intracandle)
|
||||
to improve model youth. This function is agnostic to data preparation/collection/storage,
|
||||
it simply trains on what ever data is available in the self.dd.
|
||||
:param strategy: IStrategy = The user defined strategy class
|
||||
"""
|
||||
while 1:
|
||||
while not self._stop_event.is_set():
|
||||
time.sleep(1)
|
||||
for pair in self.config.get("exchange", {}).get("pair_whitelist"):
|
||||
|
||||
@@ -225,28 +242,39 @@ class IFreqaiModel(ABC):
|
||||
"trains"
|
||||
)
|
||||
|
||||
trained_timestamp_int = int(trained_timestamp.stopts)
|
||||
dk.data_path = Path(
|
||||
dk.full_path
|
||||
/
|
||||
f"sub-train-{metadata['pair'].split('/')[0]}_{int(trained_timestamp.stopts)}"
|
||||
f"sub-train-{metadata['pair'].split('/')[0]}_{trained_timestamp_int}"
|
||||
)
|
||||
if not self.model_exists(
|
||||
metadata["pair"], dk, trained_timestamp=int(trained_timestamp.stopts)
|
||||
):
|
||||
dk.find_features(dataframe_train)
|
||||
self.model = self.train(dataframe_train, metadata["pair"], dk)
|
||||
self.dd.pair_dict[metadata["pair"]]["trained_timestamp"] = int(
|
||||
trained_timestamp.stopts)
|
||||
dk.set_new_model_names(metadata["pair"], trained_timestamp)
|
||||
self.dd.save_data(self.model, metadata["pair"], dk)
|
||||
|
||||
dk.set_new_model_names(metadata["pair"], trained_timestamp)
|
||||
|
||||
if dk.check_if_backtest_prediction_exists():
|
||||
append_df = dk.get_backtesting_prediction()
|
||||
dk.append_predictions(append_df)
|
||||
else:
|
||||
self.model = self.dd.load_data(metadata["pair"], dk)
|
||||
if not self.model_exists(
|
||||
metadata["pair"], dk, trained_timestamp=trained_timestamp_int
|
||||
):
|
||||
dk.find_features(dataframe_train)
|
||||
self.model = self.train(dataframe_train, metadata["pair"], dk)
|
||||
self.dd.pair_dict[metadata["pair"]]["trained_timestamp"] = int(
|
||||
trained_timestamp.stopts)
|
||||
|
||||
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
|
||||
if self.save_backtest_models:
|
||||
logger.info('Saving backtest model to disk.')
|
||||
self.dd.save_data(self.model, metadata["pair"], dk)
|
||||
else:
|
||||
self.model = self.dd.load_data(metadata["pair"], dk)
|
||||
|
||||
pred_df, do_preds = self.predict(dataframe_backtest, dk)
|
||||
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
|
||||
|
||||
dk.append_predictions(pred_df, do_preds)
|
||||
pred_df, do_preds = self.predict(dataframe_backtest, dk)
|
||||
append_df = dk.get_predictions_to_append(pred_df, do_preds)
|
||||
dk.append_predictions(append_df)
|
||||
dk.save_backtesting_prediction(append_df)
|
||||
|
||||
dk.fill_predictions(dataframe)
|
||||
|
||||
@@ -291,14 +319,8 @@ class IFreqaiModel(ABC):
|
||||
)
|
||||
dk.set_paths(metadata["pair"], new_trained_timerange.stopts)
|
||||
|
||||
# download candle history if it is not already in memory
|
||||
# load candle history into memory if it is not yet.
|
||||
if not self.dd.historic_data:
|
||||
logger.info(
|
||||
"Downloading all training data for all pairs in whitelist and "
|
||||
"corr_pairlist, this may take a while if you do not have the "
|
||||
"data saved"
|
||||
)
|
||||
dk.download_all_data_for_training(data_load_timerange, strategy.dp)
|
||||
self.dd.load_all_pair_histories(data_load_timerange, dk)
|
||||
|
||||
if not self.scanning:
|
||||
@@ -471,11 +493,6 @@ class IFreqaiModel(ABC):
|
||||
:return:
|
||||
:boolean: whether the model file exists or not.
|
||||
"""
|
||||
coin, _ = pair.split("/")
|
||||
|
||||
if not self.live:
|
||||
dk.model_filename = model_filename = f"cb_{coin.lower()}_{trained_timestamp}"
|
||||
|
||||
path_to_modelfile = Path(dk.data_path / f"{model_filename}_model.joblib")
|
||||
file_exists = path_to_modelfile.is_file()
|
||||
if file_exists and not scanning:
|
||||
@@ -628,8 +645,8 @@ class IFreqaiModel(ABC):
|
||||
logger.info(
|
||||
f'Total time spent inferencing pairlist {self.inference_time:.2f} seconds')
|
||||
if self.inference_time > 0.25 * self.base_tf_seconds:
|
||||
logger.warning('Inference took over 25/% of the candle time. Reduce pairlist to'
|
||||
' avoid blinding open trades and degrading performance.')
|
||||
logger.warning("Inference took over 25% of the candle time. Reduce pairlist to"
|
||||
" avoid blinding open trades and degrading performance.")
|
||||
self.pair_it = 0
|
||||
self.inference_time = 0
|
||||
return
|
||||
|
||||
Reference in New Issue
Block a user