Merge branch 'develop' into add-inlier-metric

This commit is contained in:
Robert Caulk
2022-09-06 20:40:21 +02:00
committed by GitHub
38 changed files with 664 additions and 349 deletions

View File

@@ -18,8 +18,6 @@ from sklearn.model_selection import train_test_split
from sklearn.neighbors import NearestNeighbors
from freqtrade.configuration import TimeRange
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.strategy.interface import IStrategy
@@ -73,6 +71,8 @@ class FreqaiDataKitchen:
self.label_list: List = []
self.training_features_list: List = []
self.model_filename: str = ""
self.backtesting_results_path = Path()
self.backtest_predictions_folder: str = "backtesting_predictions"
self.live = live
self.pair = pair
@@ -291,6 +291,7 @@ class FreqaiDataKitchen:
:returns:
:data_dictionary: updated dictionary with standardized values.
"""
# standardize the data by training stats
train_max = data_dictionary["train_features"].max()
train_min = data_dictionary["train_features"].min()
@@ -324,10 +325,24 @@ class FreqaiDataKitchen:
- 1
)
self.data[f"{item}_max"] = train_labels_max # .to_dict()
self.data[f"{item}_min"] = train_labels_min # .to_dict()
self.data[f"{item}_max"] = train_labels_max
self.data[f"{item}_min"] = train_labels_min
return data_dictionary
def normalize_single_dataframe(self, df: DataFrame) -> DataFrame:
train_max = df.max()
train_min = df.min()
df = (
2 * (df - train_min) / (train_max - train_min) - 1
)
for item in train_max.keys():
self.data[item + "_max"] = train_max[item]
self.data[item + "_min"] = train_min[item]
return df
def normalize_data_from_metadata(self, df: DataFrame) -> DataFrame:
"""
Normalize a set of data using the mean and standard deviation from
@@ -441,7 +456,8 @@ class FreqaiDataKitchen:
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df["date"] >= start, :]
df = df.loc[df["date"] <= stop, :]
if not self.live:
df = df.loc[df["date"] < stop, :]
return df
@@ -454,22 +470,23 @@ class FreqaiDataKitchen:
from sklearn.decomposition import PCA # avoid importing if we dont need it
n_components = self.data_dictionary["train_features"].shape[1]
pca = PCA(n_components=n_components)
pca = PCA(0.999)
pca = pca.fit(self.data_dictionary["train_features"])
n_keep_components = np.argmin(pca.explained_variance_ratio_.cumsum() < 0.999)
pca2 = PCA(n_components=n_keep_components)
n_keep_components = pca.n_components_
self.data["n_kept_components"] = n_keep_components
pca2 = pca2.fit(self.data_dictionary["train_features"])
n_components = self.data_dictionary["train_features"].shape[1]
logger.info("reduced feature dimension by %s", n_components - n_keep_components)
logger.info("explained variance %f", np.sum(pca2.explained_variance_ratio_))
train_components = pca2.transform(self.data_dictionary["train_features"])
logger.info("explained variance %f", np.sum(pca.explained_variance_ratio_))
train_components = pca.transform(self.data_dictionary["train_features"])
self.data_dictionary["train_features"] = pd.DataFrame(
data=train_components,
columns=["PC" + str(i) for i in range(0, n_keep_components)],
index=self.data_dictionary["train_features"].index,
)
# normalsing transformed training features
self.data_dictionary["train_features"] = self.normalize_single_dataframe(
self.data_dictionary["train_features"])
# keeping a copy of the non-transformed features so we can check for errors during
# model load from disk
@@ -477,15 +494,18 @@ class FreqaiDataKitchen:
self.training_features_list = self.data_dictionary["train_features"].columns
if self.freqai_config.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
test_components = pca2.transform(self.data_dictionary["test_features"])
test_components = pca.transform(self.data_dictionary["test_features"])
self.data_dictionary["test_features"] = pd.DataFrame(
data=test_components,
columns=["PC" + str(i) for i in range(0, n_keep_components)],
index=self.data_dictionary["test_features"].index,
)
# normalise transformed test feature to transformed training features
self.data_dictionary["test_features"] = self.normalize_data_from_metadata(
self.data_dictionary["test_features"])
self.data["n_kept_components"] = n_keep_components
self.pca = pca2
self.pca = pca
logger.info(f"PCA reduced total features from {n_components} to {n_keep_components}")
@@ -506,6 +526,9 @@ class FreqaiDataKitchen:
columns=["PC" + str(i) for i in range(0, self.data["n_kept_components"])],
index=filtered_dataframe.index,
)
# normalise transformed predictions to transformed training features
self.data_dictionary["prediction_features"] = self.normalize_data_from_metadata(
self.data_dictionary["prediction_features"])
def compute_distances(self) -> float:
"""
@@ -885,9 +908,10 @@ class FreqaiDataKitchen:
weights = np.exp(-np.arange(num_weights) / (wfactor * num_weights))[::-1]
return weights
def append_predictions(self, predictions: DataFrame, do_predict: npt.ArrayLike) -> None:
def get_predictions_to_append(self, predictions: DataFrame,
do_predict: npt.ArrayLike) -> DataFrame:
"""
Append backtest prediction from current backtest period to all previous periods
Get backtest prediction from current backtest period
"""
append_df = DataFrame()
@@ -902,13 +926,18 @@ class FreqaiDataKitchen:
if self.freqai_config["feature_parameters"].get("DI_threshold", 0) > 0:
append_df["DI_values"] = self.DI_values
return append_df
def append_predictions(self, append_df: DataFrame) -> None:
"""
Append backtest prediction from current backtest period to all previous periods
"""
if self.full_df.empty:
self.full_df = append_df
else:
self.full_df = pd.concat([self.full_df, append_df], axis=0)
return
def fill_predictions(self, dataframe):
"""
Back fill values to before the backtesting range so that the dataframe matches size
@@ -1008,9 +1037,7 @@ class FreqaiDataKitchen:
# We notice that users like to use exotic indicators where
# they do not know the required timeperiod. Here we include a factor
# of safety by multiplying the user considered "max" by 2.
max_period = self.freqai_config["feature_parameters"].get(
"indicator_max_period_candles", 20
) * 2
max_period = self.config.get('startup_candle_count', 20) * 2
additional_seconds = max_period * max_tf_seconds
if trained_timestamp != 0:
@@ -1056,31 +1083,6 @@ class FreqaiDataKitchen:
self.model_filename = f"cb_{coin.lower()}_{int(trained_timerange.stopts)}"
def download_all_data_for_training(self, timerange: TimeRange, dp: DataProvider) -> None:
"""
Called only once upon start of bot to download the necessary data for
populating indicators and training the model.
:param timerange: TimeRange = The full data timerange for populating the indicators
and training the model.
:param dp: DataProvider instance attached to the strategy
"""
new_pairs_days = int((timerange.stopts - timerange.startts) / SECONDS_IN_DAY)
if not dp._exchange:
# Not realistic - this is only called in live mode.
raise OperationalException("Dataprovider did not have an exchange attached.")
refresh_backtest_ohlcv_data(
dp._exchange,
pairs=self.all_pairs,
timeframes=self.freqai_config["feature_parameters"].get("include_timeframes"),
datadir=self.config["datadir"],
timerange=timerange,
new_pairs_days=new_pairs_days,
erase=False,
data_format=self.config.get("dataformat_ohlcv", "json"),
trading_mode=self.config.get("trading_mode", "spot"),
prepend=self.config.get("prepend_data", False),
)
def set_all_pairs(self) -> None:
self.all_pairs = copy.deepcopy(
@@ -1194,3 +1196,50 @@ class FreqaiDataKitchen:
if self.unique_classes:
for label in self.unique_classes:
self.unique_class_list += list(self.unique_classes[label])
def save_backtesting_prediction(
self, append_df: DataFrame
) -> None:
"""
Save prediction dataframe from backtesting to h5 file format
:param append_df: dataframe for backtesting period
"""
full_predictions_folder = Path(self.full_path / self.backtest_predictions_folder)
if not full_predictions_folder.is_dir():
full_predictions_folder.mkdir(parents=True, exist_ok=True)
append_df.to_hdf(self.backtesting_results_path, key='append_df', mode='w')
def get_backtesting_prediction(
self
) -> DataFrame:
"""
Get prediction dataframe from h5 file format
"""
append_df = pd.read_hdf(self.backtesting_results_path)
return append_df
def check_if_backtest_prediction_exists(
self
) -> bool:
"""
Check if a backtesting prediction already exists
:param dk: FreqaiDataKitchen
:return:
:boolean: whether the prediction file exists or not.
"""
path_to_predictionfile = Path(self.full_path /
self.backtest_predictions_folder /
f"{self.model_filename}_prediction.h5")
self.backtesting_results_path = path_to_predictionfile
file_exists = path_to_predictionfile.is_file()
if file_exists:
logger.info(f"Found backtesting prediction file at {path_to_predictionfile}")
else:
logger.info(
f"Could not find backtesting prediction file at {path_to_predictionfile}"
)
return file_exists