fix follower bug
This commit is contained in:
parent
e8c0dcf9f3
commit
d6b8801f41
@ -638,8 +638,8 @@ class FreqaiDataKitchen:
|
|||||||
)
|
)
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
"DI tossed %s predictions for being too far from training data",
|
f'DI tossed {len(do_predict) - do_predict.sum():.2f} predictions for '
|
||||||
len(do_predict) - do_predict.sum(),
|
'being too far from training data'
|
||||||
)
|
)
|
||||||
|
|
||||||
self.do_predict += do_predict
|
self.do_predict += do_predict
|
||||||
@ -743,7 +743,7 @@ class FreqaiDataKitchen:
|
|||||||
logger.warning('FreqAI could not detect max timeframe and therefore may not '
|
logger.warning('FreqAI could not detect max timeframe and therefore may not '
|
||||||
'download the proper amount of data for training')
|
'download the proper amount of data for training')
|
||||||
|
|
||||||
logger.info(f'Extending data download by {additional_seconds/SECONDS_IN_DAY} days')
|
logger.info(f'Extending data download by {additional_seconds/SECONDS_IN_DAY:.2f} days')
|
||||||
|
|
||||||
if trained_timestamp != 0:
|
if trained_timestamp != 0:
|
||||||
elapsed_time = (time - trained_timestamp) / SECONDS_IN_DAY
|
elapsed_time = (time - trained_timestamp) / SECONDS_IN_DAY
|
||||||
@ -770,12 +770,13 @@ class FreqaiDataKitchen:
|
|||||||
data_load_timerange.stopts = int(time)
|
data_load_timerange.stopts = int(time)
|
||||||
retrain = True
|
retrain = True
|
||||||
|
|
||||||
logger.info(f'Total data download needed '
|
# logger.info(
|
||||||
f'{(data_load_timerange.stopts - data_load_timerange.startts)/SECONDS_IN_DAY} '
|
# f'Total data download needed '
|
||||||
' days')
|
# f'{(data_load_timerange.stopts - data_load_timerange.startts)/SECONDS_IN_DAY:.2f}'
|
||||||
logger.info(f'Total training timerange '
|
# ' days')
|
||||||
f'{(trained_timerange.stopts - trained_timerange.startts)/SECONDS_IN_DAY} '
|
# logger.info(f'Total training timerange '
|
||||||
' days')
|
# f'{(trained_timerange.stopts - trained_timerange.startts)/SECONDS_IN_DAY} '
|
||||||
|
# ' days')
|
||||||
|
|
||||||
# if retrain:
|
# if retrain:
|
||||||
# coin, _ = metadata['pair'].split("/")
|
# coin, _ = metadata['pair'].split("/")
|
||||||
@ -861,11 +862,10 @@ class FreqaiDataKitchen:
|
|||||||
|
|
||||||
for pair in self.all_pairs:
|
for pair in self.all_pairs:
|
||||||
for tf in self.freqai_config.get('timeframes'):
|
for tf in self.freqai_config.get('timeframes'):
|
||||||
history_data[pair][tf] = pd.concat(
|
lh = len(history_data[pair][tf].index)
|
||||||
[history_data[pair][tf],
|
history_data[pair][tf].loc[lh] = strategy.dp.get_pair_dataframe(pair, tf).iloc[-1]
|
||||||
strategy.dp.get_pair_dataframe(pair, tf).iloc[-1]],
|
|
||||||
axis=0
|
logger.info(f'Length of history data {len(history_data[pair][tf])}')
|
||||||
)
|
|
||||||
|
|
||||||
def set_all_pairs(self) -> None:
|
def set_all_pairs(self) -> None:
|
||||||
|
|
||||||
|
@ -226,7 +226,7 @@ class IFreqaiModel(ABC):
|
|||||||
# if trainable, check if model needs training, if so compute new timerange,
|
# if trainable, check if model needs training, if so compute new timerange,
|
||||||
# then save model and metadata.
|
# then save model and metadata.
|
||||||
# if not trainable, load existing data
|
# if not trainable, load existing data
|
||||||
if (trainable and not self.follow_mode) or coin_first:
|
if (trainable or coin_first) and not self.follow_mode:
|
||||||
file_exists = False
|
file_exists = False
|
||||||
|
|
||||||
if trained_timestamp != 0: # historical model available
|
if trained_timestamp != 0: # historical model available
|
||||||
@ -416,8 +416,8 @@ class IFreqaiModel(ABC):
|
|||||||
metadata)
|
metadata)
|
||||||
unfiltered_dataframe = dh.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
|
unfiltered_dataframe = dh.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
|
||||||
|
|
||||||
except Exception:
|
except Exception as err:
|
||||||
logger.warning('Mismatched sizes encountered in strategy')
|
logger.exception(err)
|
||||||
# self.data_drawer.pair_to_end_of_training_queue(metadata['pair'])
|
# self.data_drawer.pair_to_end_of_training_queue(metadata['pair'])
|
||||||
self.training_on_separate_thread = False
|
self.training_on_separate_thread = False
|
||||||
self.retrain = False
|
self.retrain = False
|
||||||
|
Loading…
Reference in New Issue
Block a user