diff --git a/freqtrade/freqai/prediction_models/ReinforcementLearningTDQN_multiproc.py b/freqtrade/freqai/prediction_models/ReinforcementLearningTDQN_multiproc.py new file mode 100644 index 000000000..d05184d87 --- /dev/null +++ b/freqtrade/freqai/prediction_models/ReinforcementLearningTDQN_multiproc.py @@ -0,0 +1,164 @@ +import logging +from typing import Any, Dict # Optional +import torch as th +import numpy as np +import gym +from typing import Callable +from stable_baselines3.common.callbacks import EvalCallback, StopTrainingOnNoModelImprovement, StopTrainingOnRewardThreshold +from stable_baselines3.common.monitor import Monitor +from stable_baselines3.common.vec_env import SubprocVecEnv +from stable_baselines3.common.utils import set_random_seed +from stable_baselines3 import DQN +from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions +from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel +from freqtrade.freqai.RL.TDQNagent import TDQN +from stable_baselines3.common.buffers import ReplayBuffer +from freqtrade.freqai.data_kitchen import FreqaiDataKitchen + + +logger = logging.getLogger(__name__) + +def make_env(env_id: str, rank: int, seed: int, train_df, price, + reward_params, window_size, monitor=False) -> Callable: + """ + Utility function for multiprocessed env. + + :param env_id: (str) the environment ID + :param num_env: (int) the number of environment you wish to have in subprocesses + :param seed: (int) the inital seed for RNG + :param rank: (int) index of the subprocess + :return: (Callable) + """ + def _init() -> gym.Env: + + env = MyRLEnv(df=train_df, prices=price, window_size=window_size, + reward_kwargs=reward_params, id=env_id, seed=seed + rank) + if monitor: + env = Monitor(env, ".") + return env + set_random_seed(seed) + return _init + +class ReinforcementLearningTDQN_multiproc(BaseReinforcementLearningModel): + """ + User created Reinforcement Learning Model prediction model. + """ + + def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen): + + agent_params = self.freqai_info['model_training_parameters'] + reward_params = self.freqai_info['model_reward_parameters'] + train_df = data_dictionary["train_features"] + test_df = data_dictionary["test_features"] + eval_freq = agent_params["eval_cycles"] * len(test_df) + total_timesteps = agent_params["train_cycles"] * len(train_df) + learning_rate = agent_params["learning_rate"] + + # price data for model training and evaluation + price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index)) + price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail( + len(test_df.index)) + + env_id = "train_env" + num_cpu = int(dk.thread_count / 2) + train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, price, reward_params, + self.CONV_WIDTH) for i in range(num_cpu)]) + + eval_env_id = 'eval_env' + eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, price_test, reward_params, + self.CONV_WIDTH, monitor=True) for i in range(num_cpu)]) + + path = dk.data_path + stop_train_callback = StopTrainingOnNoModelImprovement(max_no_improvement_evals=5, min_evals=10, verbose=2) + callback_on_best = StopTrainingOnRewardThreshold(reward_threshold=-200, verbose=2) + eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/", + log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq), + deterministic=True, render=True, callback_after_eval=stop_train_callback, callback_on_new_best=callback_on_best, verbose=2) + # model arch + policy_kwargs = dict(activation_fn=th.nn.ReLU, + net_arch=[512, 512, 512]) + + model = TDQN('TMultiInputPolicy', train_env, + policy_kwargs=policy_kwargs, + tensorboard_log=f"{path}/tdqn/tensorboard/", + learning_rate=learning_rate, gamma=0.9, + target_update_interval=5000, buffer_size=50000, + exploration_initial_eps=1, exploration_final_eps=0.1, + replay_buffer_class=ReplayBuffer + ) + + model.learn( + total_timesteps=int(total_timesteps), + callback=eval_callback + ) + + best_model = DQN.load(dk.data_path / "best_model.zip") + print('Training finished!') + eval_env.close() + + return best_model + + +class MyRLEnv(Base3ActionRLEnv): + """ + User can override any function in BaseRLEnv and gym.Env + """ + + def calculate_reward(self, action): + + if self._last_trade_tick is None: + return 0. + + # close long + if (action == Actions.Short.value or + action == Actions.Neutral.value) and self._position == Positions.Long: + last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open) + current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open) + return float(np.log(current_price) - np.log(last_trade_price)) + + # close short + if (action == Actions.Long.value or + action == Actions.Neutral.value) and self._position == Positions.Short: + last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open) + current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open) + return float(np.log(last_trade_price) - np.log(current_price)) + + return 0. + +# User can inherit and customize 5 action environment +# class MyRLEnv(Base5ActionRLEnv): +# """ +# User can override any function in BaseRLEnv and gym.Env. Here the user +# Adds 5 actions. +# """ + +# def calculate_reward(self, action): + +# if self._last_trade_tick is None: +# return 0. + +# # close long +# if action == Actions.Long_sell.value and self._position == Positions.Long: +# last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open) +# current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open) +# return float(np.log(current_price) - np.log(last_trade_price)) + +# if action == Actions.Long_sell.value and self._position == Positions.Long: +# if self.close_trade_profit[-1] > self.profit_aim * self.rr: +# last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open) +# current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open) +# return float((np.log(current_price) - np.log(last_trade_price)) * 2) + +# # close short +# if action == Actions.Short_buy.value and self._position == Positions.Short: +# last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open) +# current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open) +# return float(np.log(last_trade_price) - np.log(current_price)) + +# if action == Actions.Short_buy.value and self._position == Positions.Short: +# if self.close_trade_profit[-1] > self.profit_aim * self.rr: +# last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open) +# current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open) +# return float((np.log(last_trade_price) - np.log(current_price)) * 2) + +# return 0.