pull in new indicators from QTPYLib
This commit is contained in:
parent
9c9cf76a0d
commit
d5d798f6fa
619
qtpylib/indicators.py
Normal file
619
qtpylib/indicators.py
Normal file
@ -0,0 +1,619 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# QTPyLib: Quantitative Trading Python Library
|
||||
# https://github.com/ranaroussi/qtpylib
|
||||
#
|
||||
# Copyright 2016 Ran Aroussi
|
||||
#
|
||||
# Licensed under the GNU Lesser General Public License, v3.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# https://www.gnu.org/licenses/lgpl-3.0.en.html
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import warnings
|
||||
import sys
|
||||
|
||||
from datetime import datetime, timedelta
|
||||
from pandas.core.base import PandasObject
|
||||
|
||||
# =============================================
|
||||
# check min, python version
|
||||
if sys.version_info < (3, 4):
|
||||
raise SystemError("QTPyLib requires Python version >= 3.4")
|
||||
|
||||
# =============================================
|
||||
warnings.simplefilter(action="ignore", category=RuntimeWarning)
|
||||
|
||||
# =============================================
|
||||
|
||||
|
||||
def numpy_rolling_window(data, window):
|
||||
shape = data.shape[:-1] + (data.shape[-1] - window + 1, window)
|
||||
strides = data.strides + (data.strides[-1],)
|
||||
return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides)
|
||||
|
||||
|
||||
def numpy_rolling_series(func):
|
||||
def func_wrapper(data, window, as_source=False):
|
||||
series = data.values if isinstance(data, pd.Series) else data
|
||||
|
||||
new_series = np.empty(len(series)) * np.nan
|
||||
calculated = func(series, window)
|
||||
new_series[-len(calculated):] = calculated
|
||||
|
||||
if as_source and isinstance(data, pd.Series):
|
||||
return pd.Series(index=data.index, data=new_series)
|
||||
|
||||
return new_series
|
||||
|
||||
return func_wrapper
|
||||
|
||||
|
||||
@numpy_rolling_series
|
||||
def numpy_rolling_mean(data, window, as_source=False):
|
||||
return np.mean(numpy_rolling_window(data, window), -1)
|
||||
|
||||
|
||||
@numpy_rolling_series
|
||||
def numpy_rolling_std(data, window, as_source=False):
|
||||
return np.std(numpy_rolling_window(data, window), -1)
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
|
||||
def session(df, start='17:00', end='16:00'):
|
||||
""" remove previous globex day from df """
|
||||
if len(df) == 0:
|
||||
return df
|
||||
|
||||
# get start/end/now as decimals
|
||||
int_start = list(map(int, start.split(':')))
|
||||
int_start = (int_start[0] + int_start[1] - 1 / 100) - 0.0001
|
||||
int_end = list(map(int, end.split(':')))
|
||||
int_end = int_end[0] + int_end[1] / 100
|
||||
int_now = (df[-1:].index.hour[0] + (df[:1].index.minute[0]) / 100)
|
||||
|
||||
# same-dat session?
|
||||
is_same_day = int_end > int_start
|
||||
|
||||
# set pointers
|
||||
curr = prev = df[-1:].index[0].strftime('%Y-%m-%d')
|
||||
|
||||
# globex/forex session
|
||||
if is_same_day == False:
|
||||
prev = (datetime.strptime(curr, '%Y-%m-%d') -
|
||||
timedelta(1)).strftime('%Y-%m-%d')
|
||||
|
||||
# slice
|
||||
if int_now >= int_start:
|
||||
df = df[df.index >= curr + ' ' + start]
|
||||
else:
|
||||
df = df[df.index >= prev + ' ' + start]
|
||||
|
||||
return df.copy()
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def heikinashi(bars):
|
||||
bars = bars.copy()
|
||||
bars['ha_close'] = (bars['open'] + bars['high'] +
|
||||
bars['low'] + bars['close']) / 4
|
||||
bars['ha_open'] = (bars['open'].shift(1) + bars['close'].shift(1)) / 2
|
||||
bars.loc[:1, 'ha_open'] = bars['open'].values[0]
|
||||
bars.loc[1:, 'ha_open'] = (
|
||||
(bars['ha_open'].shift(1) + bars['ha_close'].shift(1)) / 2)[1:]
|
||||
bars['ha_high'] = bars.loc[:, ['high', 'ha_open', 'ha_close']].max(axis=1)
|
||||
bars['ha_low'] = bars.loc[:, ['low', 'ha_open', 'ha_close']].min(axis=1)
|
||||
|
||||
return pd.DataFrame(index=bars.index, data={'open': bars['ha_open'],
|
||||
'high': bars['ha_high'], 'low': bars['ha_low'], 'close': bars['ha_close']})
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def tdi(series, rsi_len=13, bollinger_len=34, rsi_smoothing=2, rsi_signal_len=7, bollinger_std=1.6185):
|
||||
rsi_series = rsi(series, rsi_len)
|
||||
bb_series = bollinger_bands(rsi_series, bollinger_len, bollinger_std)
|
||||
signal = sma(rsi_series, rsi_signal_len)
|
||||
rsi_series = sma(rsi_series, rsi_smoothing)
|
||||
|
||||
return pd.DataFrame(index=series.index, data={
|
||||
"rsi": rsi_series,
|
||||
"signal": signal,
|
||||
"bbupper": bb_series['upper'],
|
||||
"bblower": bb_series['lower'],
|
||||
"bbmid": bb_series['mid']
|
||||
})
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
|
||||
def awesome_oscillator(df, weighted=False, fast=5, slow=34):
|
||||
midprice = (df['high'] + df['low']) / 2
|
||||
|
||||
if weighted:
|
||||
ao = (midprice.ewm(fast).mean() - midprice.ewm(slow).mean()).values
|
||||
else:
|
||||
ao = numpy_rolling_mean(midprice, fast) - \
|
||||
numpy_rolling_mean(midprice, slow)
|
||||
|
||||
return pd.Series(index=df.index, data=ao)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def nans(len=1):
|
||||
mtx = np.empty(len)
|
||||
mtx[:] = np.nan
|
||||
return mtx
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def typical_price(bars):
|
||||
res = (bars['high'] + bars['low'] + bars['close']) / 3.
|
||||
return pd.Series(index=bars.index, data=res)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def mid_price(bars):
|
||||
res = (bars['high'] + bars['low']) / 2.
|
||||
return pd.Series(index=bars.index, data=res)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def ibs(bars):
|
||||
""" Internal bar strength """
|
||||
res = np.round((bars['close'] - bars['low']) /
|
||||
(bars['high'] - bars['low']), 2)
|
||||
return pd.Series(index=bars.index, data=res)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def true_range(bars):
|
||||
return pd.DataFrame({
|
||||
"hl": bars['high'] - bars['low'],
|
||||
"hc": abs(bars['high'] - bars['close'].shift(1)),
|
||||
"lc": abs(bars['low'] - bars['close'].shift(1))
|
||||
}).max(axis=1)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def atr(bars, window=14, exp=False):
|
||||
tr = true_range(bars)
|
||||
|
||||
if exp:
|
||||
res = rolling_weighted_mean(tr, window)
|
||||
else:
|
||||
res = rolling_mean(tr, window)
|
||||
|
||||
res = pd.Series(res)
|
||||
return (res.shift(1) * (window - 1) + res) / window
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def crossed(series1, series2, direction=None):
|
||||
if isinstance(series1, np.ndarray):
|
||||
series1 = pd.Series(series1)
|
||||
|
||||
if isinstance(series2, int) or isinstance(series2, float) or isinstance(series2, np.ndarray):
|
||||
series2 = pd.Series(index=series1.index, data=series2)
|
||||
|
||||
if direction is None or direction == "above":
|
||||
above = pd.Series((series1 > series2) & (
|
||||
series1.shift(1) <= series2.shift(1)))
|
||||
|
||||
if direction is None or direction == "below":
|
||||
below = pd.Series((series1 < series2) & (
|
||||
series1.shift(1) >= series2.shift(1)))
|
||||
|
||||
if direction is None:
|
||||
return above or below
|
||||
|
||||
return above if direction is "above" else below
|
||||
|
||||
|
||||
def crossed_above(series1, series2):
|
||||
return crossed(series1, series2, "above")
|
||||
|
||||
|
||||
def crossed_below(series1, series2):
|
||||
return crossed(series1, series2, "below")
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
|
||||
def rolling_std(series, window=200, min_periods=None):
|
||||
min_periods = window if min_periods is None else min_periods
|
||||
try:
|
||||
if min_periods == window:
|
||||
return numpy_rolling_std(series, window, True)
|
||||
else:
|
||||
try:
|
||||
return series.rolling(window=window, min_periods=min_periods).std()
|
||||
except:
|
||||
return pd.Series(series).rolling(window=window, min_periods=min_periods).std()
|
||||
except:
|
||||
return pd.rolling_std(series, window=window, min_periods=min_periods)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def rolling_mean(series, window=200, min_periods=None):
|
||||
min_periods = window if min_periods is None else min_periods
|
||||
try:
|
||||
if min_periods == window:
|
||||
return numpy_rolling_mean(series, window, True)
|
||||
else:
|
||||
try:
|
||||
return series.rolling(window=window, min_periods=min_periods).mean()
|
||||
except:
|
||||
return pd.Series(series).rolling(window=window, min_periods=min_periods).mean()
|
||||
except:
|
||||
return pd.rolling_mean(series, window=window, min_periods=min_periods)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def rolling_min(series, window=14, min_periods=None):
|
||||
min_periods = window if min_periods is None else min_periods
|
||||
try:
|
||||
try:
|
||||
return series.rolling(window=window, min_periods=min_periods).min()
|
||||
except:
|
||||
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
|
||||
except:
|
||||
return pd.rolling_min(series, window=window, min_periods=min_periods)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def rolling_max(series, window=14, min_periods=None):
|
||||
min_periods = window if min_periods is None else min_periods
|
||||
try:
|
||||
try:
|
||||
return series.rolling(window=window, min_periods=min_periods).min()
|
||||
except:
|
||||
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
|
||||
except:
|
||||
return pd.rolling_min(series, window=window, min_periods=min_periods)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def rolling_weighted_mean(series, window=200, min_periods=None):
|
||||
min_periods = window if min_periods is None else min_periods
|
||||
try:
|
||||
return series.ewm(span=window, min_periods=min_periods).mean()
|
||||
except:
|
||||
return pd.ewma(series, span=window, min_periods=min_periods)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def hull_moving_average(series, window=200):
|
||||
wma = (2 * rolling_weighted_mean(series, window=window / 2)) - \
|
||||
rolling_weighted_mean(series, window=window)
|
||||
return rolling_weighted_mean(wma, window=np.sqrt(window))
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def sma(series, window=200, min_periods=None):
|
||||
return rolling_mean(series, window=window, min_periods=min_periods)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def wma(series, window=200, min_periods=None):
|
||||
return rolling_weighted_mean(series, window=window, min_periods=min_periods)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def hma(series, window=200):
|
||||
return hull_moving_average(series, window=window)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def vwap(bars):
|
||||
"""
|
||||
calculate vwap of entire time series
|
||||
(input can be pandas series or numpy array)
|
||||
bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ]
|
||||
"""
|
||||
typical = ((bars['high'] + bars['low'] + bars['close']) / 3).values
|
||||
volume = bars['volume'].values
|
||||
|
||||
return pd.Series(index=bars.index,
|
||||
data=np.cumsum(volume * typical) / np.cumsum(volume))
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def rolling_vwap(bars, window=200, min_periods=None):
|
||||
"""
|
||||
calculate vwap using moving window
|
||||
(input can be pandas series or numpy array)
|
||||
bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ]
|
||||
"""
|
||||
min_periods = window if min_periods is None else min_periods
|
||||
|
||||
typical = ((bars['high'] + bars['low'] + bars['close']) / 3)
|
||||
volume = bars['volume']
|
||||
|
||||
left = (volume * typical).rolling(window=window,
|
||||
min_periods=min_periods).sum()
|
||||
right = volume.rolling(window=window, min_periods=min_periods).sum()
|
||||
|
||||
return pd.Series(index=bars.index, data=(left / right))
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def rsi(series, window=14):
|
||||
"""
|
||||
compute the n period relative strength indicator
|
||||
"""
|
||||
# 100-(100/relative_strength)
|
||||
deltas = np.diff(series)
|
||||
seed = deltas[:window + 1]
|
||||
|
||||
# default values
|
||||
ups = seed[seed > 0].sum() / window
|
||||
downs = -seed[seed < 0].sum() / window
|
||||
rsival = np.zeros_like(series)
|
||||
rsival[:window] = 100. - 100. / (1. + ups / downs)
|
||||
|
||||
# period values
|
||||
for i in range(window, len(series)):
|
||||
delta = deltas[i - 1]
|
||||
if delta > 0:
|
||||
upval = delta
|
||||
downval = 0
|
||||
else:
|
||||
upval = 0
|
||||
downval = -delta
|
||||
|
||||
ups = (ups * (window - 1) + upval) / window
|
||||
downs = (downs * (window - 1.) + downval) / window
|
||||
rsival[i] = 100. - 100. / (1. + ups / downs)
|
||||
|
||||
# return rsival
|
||||
return pd.Series(index=series.index, data=rsival)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def macd(series, fast=3, slow=10, smooth=16):
|
||||
"""
|
||||
compute the MACD (Moving Average Convergence/Divergence)
|
||||
using a fast and slow exponential moving avg'
|
||||
return value is emaslow, emafast, macd which are len(x) arrays
|
||||
"""
|
||||
macd = rolling_weighted_mean(series, window=fast) - \
|
||||
rolling_weighted_mean(series, window=slow)
|
||||
signal = rolling_weighted_mean(macd, window=smooth)
|
||||
histogram = macd - signal
|
||||
# return macd, signal, histogram
|
||||
return pd.DataFrame(index=series.index, data={
|
||||
'macd': macd.values,
|
||||
'signal': signal.values,
|
||||
'histogram': histogram.values
|
||||
})
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def bollinger_bands(series, window=20, stds=2):
|
||||
sma = rolling_mean(series, window=window)
|
||||
std = rolling_std(series, window=window)
|
||||
upper = sma + std * stds
|
||||
lower = sma - std * stds
|
||||
|
||||
return pd.DataFrame(index=series.index, data={
|
||||
'upper': upper,
|
||||
'mid': sma,
|
||||
'lower': lower
|
||||
})
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def weighted_bollinger_bands(series, window=20, stds=2):
|
||||
ema = rolling_weighted_mean(series, window=window)
|
||||
std = rolling_std(series, window=window)
|
||||
upper = ema + std * stds
|
||||
lower = ema - std * stds
|
||||
|
||||
return pd.DataFrame(index=series.index, data={
|
||||
'upper': upper.values,
|
||||
'mid': ema.values,
|
||||
'lower': lower.values
|
||||
})
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def returns(series):
|
||||
try:
|
||||
res = (series / series.shift(1) -
|
||||
1).replace([np.inf, -np.inf], float('NaN'))
|
||||
except:
|
||||
res = nans(len(series))
|
||||
|
||||
return pd.Series(index=series.index, data=res)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def log_returns(series):
|
||||
try:
|
||||
res = np.log(series / series.shift(1)
|
||||
).replace([np.inf, -np.inf], float('NaN'))
|
||||
except:
|
||||
res = nans(len(series))
|
||||
|
||||
return pd.Series(index=series.index, data=res)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def implied_volatility(series, window=252):
|
||||
try:
|
||||
logret = np.log(series / series.shift(1)
|
||||
).replace([np.inf, -np.inf], float('NaN'))
|
||||
res = numpy_rolling_std(logret, window) * np.sqrt(window)
|
||||
except:
|
||||
res = nans(len(series))
|
||||
|
||||
return pd.Series(index=series.index, data=res)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def keltner_channel(bars, window=14, atrs=2):
|
||||
typical_mean = rolling_mean(typical_price(bars), window)
|
||||
atrval = atr(bars, window) * atrs
|
||||
|
||||
upper = typical_mean + atrval
|
||||
lower = typical_mean - atrval
|
||||
|
||||
return pd.DataFrame(index=bars.index, data={
|
||||
'upper': upper.values,
|
||||
'mid': typical_mean.values,
|
||||
'lower': lower.values
|
||||
})
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def roc(series, window=14):
|
||||
"""
|
||||
compute rate of change
|
||||
"""
|
||||
res = (series - series.shift(window)) / series.shift(window)
|
||||
return pd.Series(index=series.index, data=res)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def cci(series, window=14):
|
||||
"""
|
||||
compute commodity channel index
|
||||
"""
|
||||
price = typical_price(series)
|
||||
typical_mean = rolling_mean(price, window)
|
||||
res = (price - typical_mean) / (.015 * np.std(typical_mean))
|
||||
return pd.Series(index=series.index, data=res)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def stoch(df, window=14, d=3, k=3, fast=False):
|
||||
"""
|
||||
compute the n period relative strength indicator
|
||||
http://excelta.blogspot.co.il/2013/09/stochastic-oscillator-technical.html
|
||||
"""
|
||||
highs_ma = pd.concat([df['high'].shift(i)
|
||||
for i in np.arange(window)], 1).apply(list, 1)
|
||||
highs_ma = highs_ma.T.max().T
|
||||
|
||||
lows_ma = pd.concat([df['low'].shift(i)
|
||||
for i in np.arange(window)], 1).apply(list, 1)
|
||||
lows_ma = lows_ma.T.min().T
|
||||
|
||||
fast_k = ((df['close'] - lows_ma) / (highs_ma - lows_ma)) * 100
|
||||
fast_d = numpy_rolling_mean(fast_k, d)
|
||||
|
||||
if fast:
|
||||
data = {
|
||||
'k': fast_k,
|
||||
'd': fast_d
|
||||
}
|
||||
|
||||
else:
|
||||
slow_k = numpy_rolling_mean(fast_k, k)
|
||||
slow_d = numpy_rolling_mean(slow_k, d)
|
||||
data = {
|
||||
'k': slow_k,
|
||||
'd': slow_d
|
||||
}
|
||||
|
||||
return pd.DataFrame(index=df.index, data=data)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
def zscore(bars, window=20, stds=1, col='close'):
|
||||
""" get zscore of price """
|
||||
std = numpy_rolling_std(bars[col], window)
|
||||
mean = numpy_rolling_mean(bars[col], window)
|
||||
return (bars[col] - mean) / (std * stds)
|
||||
|
||||
# ---------------------------------------------
|
||||
|
||||
|
||||
def pvt(bars):
|
||||
""" Price Volume Trend """
|
||||
pvt = ((bars['close'] - bars['close'].shift(1)) /
|
||||
bars['close'].shift(1)) * bars['volume']
|
||||
return pvt.cumsum()
|
||||
|
||||
|
||||
# =============================================
|
||||
|
||||
PandasObject.session = session
|
||||
PandasObject.atr = atr
|
||||
PandasObject.bollinger_bands = bollinger_bands
|
||||
PandasObject.cci = cci
|
||||
PandasObject.crossed = crossed
|
||||
PandasObject.crossed_above = crossed_above
|
||||
PandasObject.crossed_below = crossed_below
|
||||
PandasObject.heikinashi = heikinashi
|
||||
PandasObject.hull_moving_average = hull_moving_average
|
||||
PandasObject.ibs = ibs
|
||||
PandasObject.implied_volatility = implied_volatility
|
||||
PandasObject.keltner_channel = keltner_channel
|
||||
PandasObject.log_returns = log_returns
|
||||
PandasObject.macd = macd
|
||||
PandasObject.returns = returns
|
||||
PandasObject.roc = roc
|
||||
PandasObject.rolling_max = rolling_max
|
||||
PandasObject.rolling_min = rolling_min
|
||||
PandasObject.rolling_mean = rolling_mean
|
||||
PandasObject.rolling_std = rolling_std
|
||||
PandasObject.rsi = rsi
|
||||
PandasObject.stoch = stoch
|
||||
PandasObject.zscore = zscore
|
||||
PandasObject.pvt = pvt
|
||||
PandasObject.tdi = tdi
|
||||
PandasObject.true_range = true_range
|
||||
PandasObject.mid_price = mid_price
|
||||
PandasObject.typical_price = typical_price
|
||||
PandasObject.vwap = vwap
|
||||
PandasObject.rolling_vwap = rolling_vwap
|
||||
PandasObject.weighted_bollinger_bands = weighted_bollinger_bands
|
||||
PandasObject.rolling_weighted_mean = rolling_weighted_mean
|
||||
|
||||
PandasObject.sma = sma
|
||||
PandasObject.wma = wma
|
||||
PandasObject.hma = hma
|
Loading…
Reference in New Issue
Block a user