Added short and exit_short to strategy
This commit is contained in:
parent
98fe3e73de
commit
d4a7d2d444
@ -167,8 +167,15 @@ class Edge:
|
||||
pair_data = pair_data.sort_values(by=['date'])
|
||||
pair_data = pair_data.reset_index(drop=True)
|
||||
|
||||
df_analyzed = self.strategy.advise_sell(
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
df_analyzed = self.strategy.advise_exit(
|
||||
dataframe=self.strategy.advise_enter(
|
||||
dataframe=pair_data,
|
||||
metadata={'pair': pair},
|
||||
is_short=False
|
||||
),
|
||||
metadata={'pair': pair},
|
||||
is_short=False
|
||||
)[headers].copy()
|
||||
|
||||
trades += self._find_trades_for_stoploss_range(df_analyzed, pair, self._stoploss_range)
|
||||
|
||||
|
@ -7,6 +7,8 @@ class SignalType(Enum):
|
||||
"""
|
||||
BUY = "buy"
|
||||
SELL = "sell"
|
||||
SHORT = "short"
|
||||
EXIT_SHORT = "exit_short"
|
||||
|
||||
|
||||
class SignalTagType(Enum):
|
||||
@ -14,3 +16,4 @@ class SignalTagType(Enum):
|
||||
Enum for signal columns
|
||||
"""
|
||||
BUY_TAG = "buy_tag"
|
||||
SELL_TAG = "sell_tag"
|
||||
|
@ -231,8 +231,8 @@ class Backtesting:
|
||||
if has_buy_tag:
|
||||
pair_data.loc[:, 'buy_tag'] = None # cleanup if buy_tag is exist
|
||||
|
||||
df_analyzed = self.strategy.advise_sell(
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair}).copy()
|
||||
df_analyzed = self.strategy.advise_exit(
|
||||
self.strategy.advise_enter(pair_data, {'pair': pair}), {'pair': pair}).copy()
|
||||
# Trim startup period from analyzed dataframe
|
||||
df_analyzed = trim_dataframe(df_analyzed, self.timerange,
|
||||
startup_candles=self.required_startup)
|
||||
|
@ -110,7 +110,7 @@ class Hyperopt:
|
||||
self.backtesting.strategy.advise_indicators = ( # type: ignore
|
||||
self.custom_hyperopt.populate_indicators) # type: ignore
|
||||
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
|
||||
self.backtesting.strategy.advise_buy = ( # type: ignore
|
||||
self.backtesting.strategy.advise_enter = ( # type: ignore
|
||||
self.custom_hyperopt.populate_buy_trend) # type: ignore
|
||||
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
|
||||
self.backtesting.strategy.advise_sell = ( # type: ignore
|
||||
@ -283,12 +283,13 @@ class Hyperopt:
|
||||
params_dict = self._get_params_dict(self.dimensions, raw_params)
|
||||
|
||||
# Apply parameters
|
||||
# TODO-lev: These don't take a side, how can I pass is_short=True/False to it
|
||||
if HyperoptTools.has_space(self.config, 'buy'):
|
||||
self.backtesting.strategy.advise_buy = ( # type: ignore
|
||||
self.backtesting.strategy.advise_enter = ( # type: ignore
|
||||
self.custom_hyperopt.buy_strategy_generator(params_dict))
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'sell'):
|
||||
self.backtesting.strategy.advise_sell = ( # type: ignore
|
||||
self.backtesting.strategy.advise_exit = ( # type: ignore
|
||||
self.custom_hyperopt.sell_strategy_generator(params_dict))
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'protection'):
|
||||
|
@ -51,6 +51,7 @@ class HyperOptResolver(IResolver):
|
||||
if not hasattr(hyperopt, 'populate_sell_trend'):
|
||||
logger.info("Hyperopt class does not provide populate_sell_trend() method. "
|
||||
"Using populate_sell_trend from the strategy.")
|
||||
# TODO-lev: Short equivelents?
|
||||
return hyperopt
|
||||
|
||||
|
||||
|
@ -202,9 +202,14 @@ class StrategyResolver(IResolver):
|
||||
strategy._populate_fun_len = len(getfullargspec(strategy.populate_indicators).args)
|
||||
strategy._buy_fun_len = len(getfullargspec(strategy.populate_buy_trend).args)
|
||||
strategy._sell_fun_len = len(getfullargspec(strategy.populate_sell_trend).args)
|
||||
strategy._short_fun_len = len(getfullargspec(strategy.populate_short_trend).args)
|
||||
strategy._exit_short_fun_len = len(
|
||||
getfullargspec(strategy.populate_exit_short_trend).args)
|
||||
if any(x == 2 for x in [strategy._populate_fun_len,
|
||||
strategy._buy_fun_len,
|
||||
strategy._sell_fun_len]):
|
||||
strategy._sell_fun_len,
|
||||
strategy._short_fun_len,
|
||||
strategy._exit_short_fun_len]):
|
||||
strategy.INTERFACE_VERSION = 1
|
||||
|
||||
return strategy
|
||||
|
@ -44,5 +44,5 @@ class UvicornServer(uvicorn.Server):
|
||||
time.sleep(1e-3)
|
||||
|
||||
def cleanup(self):
|
||||
self.should_exit = True
|
||||
self.should_sell = True
|
||||
self.thread.join()
|
||||
|
@ -22,6 +22,8 @@ from freqtrade.exceptions import OperationalException
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# TODO-lev: This file
|
||||
|
||||
|
||||
class BaseParameter(ABC):
|
||||
"""
|
||||
|
@ -62,6 +62,8 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
_populate_fun_len: int = 0
|
||||
_buy_fun_len: int = 0
|
||||
_sell_fun_len: int = 0
|
||||
_short_fun_len: int = 0
|
||||
_exit_short_fun_len: int = 0
|
||||
_ft_params_from_file: Dict = {}
|
||||
# associated minimal roi
|
||||
minimal_roi: Dict
|
||||
@ -135,7 +137,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
@abstractmethod
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Populate indicators that will be used in the Buy and Sell strategy
|
||||
Populate indicators that will be used in the Buy, Sell, Short, Exit_short strategy
|
||||
:param dataframe: DataFrame with data from the exchange
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
@ -143,7 +145,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
return dataframe
|
||||
|
||||
@abstractmethod
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
def populate_enter_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
@ -153,7 +155,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
return dataframe
|
||||
|
||||
@abstractmethod
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
@ -164,9 +166,9 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
|
||||
def check_buy_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
|
||||
"""
|
||||
Check buy timeout function callback.
|
||||
This method can be used to override the buy-timeout.
|
||||
It is called whenever a limit buy order has been created,
|
||||
Check enter timeout function callback.
|
||||
This method can be used to override the enter-timeout.
|
||||
It is called whenever a limit buy/short order has been created,
|
||||
and is not yet fully filled.
|
||||
Configuration options in `unfilledtimeout` will be verified before this,
|
||||
so ensure to set these timeouts high enough.
|
||||
@ -176,16 +178,16 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
:param trade: trade object.
|
||||
:param order: Order dictionary as returned from CCXT.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the buy-order is cancelled.
|
||||
:return bool: When True is returned, then the buy/short-order is cancelled.
|
||||
"""
|
||||
return False
|
||||
|
||||
def check_sell_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
|
||||
"""
|
||||
Check sell timeout function callback.
|
||||
This method can be used to override the sell-timeout.
|
||||
It is called whenever a limit sell order has been created,
|
||||
and is not yet fully filled.
|
||||
Check exit timeout function callback.
|
||||
This method can be used to override the exit-timeout.
|
||||
It is called whenever a (long) limit sell order or (short) limit buy
|
||||
has been created, and is not yet fully filled.
|
||||
Configuration options in `unfilledtimeout` will be verified before this,
|
||||
so ensure to set these timeouts high enough.
|
||||
|
||||
@ -194,7 +196,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
:param trade: trade object.
|
||||
:param order: Order dictionary as returned from CCXT.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the sell-order is cancelled.
|
||||
:return bool: When True is returned, then the (long)sell/(short)buy-order is cancelled.
|
||||
"""
|
||||
return False
|
||||
|
||||
@ -210,7 +212,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, current_time: datetime, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a buy order.
|
||||
Called right before placing a buy/short order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
@ -218,7 +220,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be bought.
|
||||
:param pair: Pair that's about to be bought/shorted.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in target (quote) currency that's going to be traded.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
@ -234,7 +236,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
rate: float, time_in_force: str, sell_reason: str,
|
||||
current_time: datetime, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a regular sell order.
|
||||
Called right before placing a regular sell/exit_short order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
@ -242,18 +244,18 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be sold.
|
||||
:param pair: Pair for trade that's about to be exited.
|
||||
:param trade: trade object.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in quote currency.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||
:param sell_reason: Sell reason.
|
||||
:param sell_reason: Exit reason.
|
||||
Can be any of ['roi', 'stop_loss', 'stoploss_on_exchange', 'trailing_stop_loss',
|
||||
'sell_signal', 'force_sell', 'emergency_sell']
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the sell-order is placed on the exchange.
|
||||
:return bool: When True, then the sell-order/exit_short-order is placed on the exchange.
|
||||
False aborts the process
|
||||
"""
|
||||
return True
|
||||
@ -283,15 +285,15 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
def custom_sell(self, pair: str, trade: Trade, current_time: datetime, current_rate: float,
|
||||
current_profit: float, **kwargs) -> Optional[Union[str, bool]]:
|
||||
"""
|
||||
Custom sell signal logic indicating that specified position should be sold. Returning a
|
||||
string or True from this method is equal to setting sell signal on a candle at specified
|
||||
time. This method is not called when sell signal is set.
|
||||
Custom exit signal logic indicating that specified position should be sold. Returning a
|
||||
string or True from this method is equal to setting exit signal on a candle at specified
|
||||
time. This method is not called when exit signal is set.
|
||||
|
||||
This method should be overridden to create sell signals that depend on trade parameters. For
|
||||
example you could implement a sell relative to the candle when the trade was opened,
|
||||
This method should be overridden to create exit signals that depend on trade parameters. For
|
||||
example you could implement an exit relative to the candle when the trade was opened,
|
||||
or a custom 1:2 risk-reward ROI.
|
||||
|
||||
Custom sell reason max length is 64. Exceeding characters will be removed.
|
||||
Custom exit reason max length is 64. Exceeding characters will be removed.
|
||||
|
||||
:param pair: Pair that's currently analyzed
|
||||
:param trade: trade object.
|
||||
@ -299,7 +301,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
|
||||
:param current_profit: Current profit (as ratio), calculated based on current_rate.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return: To execute sell, return a string with custom sell reason or True. Otherwise return
|
||||
:return: To execute exit, return a string with custom sell reason or True. Otherwise return
|
||||
None or False.
|
||||
"""
|
||||
return None
|
||||
@ -371,7 +373,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
Checks if a pair is currently locked
|
||||
The 2nd, optional parameter ensures that locks are applied until the new candle arrives,
|
||||
and not stop at 14:00:00 - while the next candle arrives at 14:00:02 leaving a gap
|
||||
of 2 seconds for a buy to happen on an old signal.
|
||||
of 2 seconds for a buy/short to happen on an old signal.
|
||||
:param pair: "Pair to check"
|
||||
:param candle_date: Date of the last candle. Optional, defaults to current date
|
||||
:returns: locking state of the pair in question.
|
||||
@ -387,15 +389,17 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
def analyze_ticker(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Parses the given candle (OHLCV) data and returns a populated DataFrame
|
||||
add several TA indicators and buy signal to it
|
||||
add several TA indicators and buy/short signal to it
|
||||
:param dataframe: Dataframe containing data from exchange
|
||||
:param metadata: Metadata dictionary with additional data (e.g. 'pair')
|
||||
:return: DataFrame of candle (OHLCV) data with indicator data and signals added
|
||||
"""
|
||||
logger.debug("TA Analysis Launched")
|
||||
dataframe = self.advise_indicators(dataframe, metadata)
|
||||
dataframe = self.advise_buy(dataframe, metadata)
|
||||
dataframe = self.advise_sell(dataframe, metadata)
|
||||
dataframe = self.advise_enter(dataframe, metadata, is_short=False)
|
||||
dataframe = self.advise_exit(dataframe, metadata, is_short=False)
|
||||
dataframe = self.advise_enter(dataframe, metadata, is_short=True)
|
||||
dataframe = self.advise_exit(dataframe, metadata, is_short=True)
|
||||
return dataframe
|
||||
|
||||
def _analyze_ticker_internal(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
@ -422,7 +426,10 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
logger.debug("Skipping TA Analysis for already analyzed candle")
|
||||
dataframe['buy'] = 0
|
||||
dataframe['sell'] = 0
|
||||
dataframe['short'] = 0
|
||||
dataframe['exit_short'] = 0
|
||||
dataframe['buy_tag'] = None
|
||||
dataframe['short_tag'] = None
|
||||
|
||||
# Other Defs in strategy that want to be called every loop here
|
||||
# twitter_sell = self.watch_twitter_feed(dataframe, metadata)
|
||||
@ -482,6 +489,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
if dataframe is None:
|
||||
message = "No dataframe returned (return statement missing?)."
|
||||
elif 'buy' not in dataframe:
|
||||
# TODO-lev: Something?
|
||||
message = "Buy column not set."
|
||||
elif df_len != len(dataframe):
|
||||
message = message_template.format("length")
|
||||
@ -499,15 +507,18 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
self,
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
dataframe: DataFrame
|
||||
dataframe: DataFrame,
|
||||
is_short: bool = False
|
||||
) -> Tuple[bool, bool, Optional[str]]:
|
||||
"""
|
||||
Calculates current signal based based on the buy / sell columns of the dataframe.
|
||||
Used by Bot to get the signal to buy or sell
|
||||
Calculates current signal based based on the buy/short or sell/exit_short
|
||||
columns of the dataframe.
|
||||
Used by Bot to get the signal to buy, sell, short, or exit_short
|
||||
:param pair: pair in format ANT/BTC
|
||||
:param timeframe: timeframe to use
|
||||
:param dataframe: Analyzed dataframe to get signal from.
|
||||
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
|
||||
:return: (Buy, Sell)/(Short, Exit_short) A bool-tuple indicating
|
||||
(buy/sell)/(short/exit_short) signal
|
||||
"""
|
||||
if not isinstance(dataframe, DataFrame) or dataframe.empty:
|
||||
logger.warning(f'Empty candle (OHLCV) data for pair {pair}')
|
||||
@ -528,42 +539,49 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
)
|
||||
return False, False, None
|
||||
|
||||
buy = latest[SignalType.BUY.value] == 1
|
||||
(enter_type, enter_tag) = (
|
||||
(SignalType.SHORT, SignalTagType.SHORT_TAG)
|
||||
if is_short else
|
||||
(SignalType.BUY, SignalTagType.BUY_TAG)
|
||||
)
|
||||
exit_type = SignalType.EXIT_SHORT if is_short else SignalType.SELL
|
||||
|
||||
sell = False
|
||||
if SignalType.SELL.value in latest:
|
||||
sell = latest[SignalType.SELL.value] == 1
|
||||
enter = latest[enter_type.value] == 1
|
||||
|
||||
buy_tag = latest.get(SignalTagType.BUY_TAG.value, None)
|
||||
exit = False
|
||||
if exit_type.value in latest:
|
||||
exit = latest[exit_type.value] == 1
|
||||
|
||||
logger.debug('trigger: %s (pair=%s) buy=%s sell=%s',
|
||||
latest['date'], pair, str(buy), str(sell))
|
||||
enter_tag_value = latest.get(enter_tag.value, None)
|
||||
|
||||
logger.debug(f'trigger: %s (pair=%s) {enter_type.value}=%s {exit_type.value}=%s',
|
||||
latest['date'], pair, str(enter), str(exit))
|
||||
timeframe_seconds = timeframe_to_seconds(timeframe)
|
||||
if self.ignore_expired_candle(latest_date=latest_date,
|
||||
current_time=datetime.now(timezone.utc),
|
||||
timeframe_seconds=timeframe_seconds,
|
||||
buy=buy):
|
||||
return False, sell, buy_tag
|
||||
return buy, sell, buy_tag
|
||||
enter=enter):
|
||||
return False, exit, enter_tag_value
|
||||
return enter, exit, enter_tag_value
|
||||
|
||||
def ignore_expired_candle(self, latest_date: datetime, current_time: datetime,
|
||||
timeframe_seconds: int, buy: bool):
|
||||
if self.ignore_buying_expired_candle_after and buy:
|
||||
timeframe_seconds: int, enter: bool):
|
||||
if self.ignore_buying_expired_candle_after and enter:
|
||||
time_delta = current_time - (latest_date + timedelta(seconds=timeframe_seconds))
|
||||
return time_delta.total_seconds() > self.ignore_buying_expired_candle_after
|
||||
else:
|
||||
return False
|
||||
|
||||
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool,
|
||||
sell: bool, low: float = None, high: float = None,
|
||||
def should_sell(self, trade: Trade, rate: float, date: datetime, enter: bool,
|
||||
exit: bool, low: float = None, high: float = None,
|
||||
force_stoploss: float = 0) -> SellCheckTuple:
|
||||
"""
|
||||
This function evaluates if one of the conditions required to trigger a sell
|
||||
has been reached, which can either be a stop-loss, ROI or sell-signal.
|
||||
:param low: Only used during backtesting to simulate stoploss
|
||||
:param high: Only used during backtesting, to simulate ROI
|
||||
This function evaluates if one of the conditions required to trigger a sell/exit_short
|
||||
has been reached, which can either be a stop-loss, ROI or exit-signal.
|
||||
:param low: Only used during backtesting to simulate (long)stoploss/(short)ROI
|
||||
:param high: Only used during backtesting, to simulate (short)stoploss/(long)ROI
|
||||
:param force_stoploss: Externally provided stoploss
|
||||
:return: True if trade should be sold, False otherwise
|
||||
:return: True if trade should be exited, False otherwise
|
||||
"""
|
||||
current_rate = rate
|
||||
current_profit = trade.calc_profit_ratio(current_rate)
|
||||
@ -578,8 +596,8 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
current_rate = high or rate
|
||||
current_profit = trade.calc_profit_ratio(current_rate)
|
||||
|
||||
# if buy signal and ignore_roi is set, we don't need to evaluate min_roi.
|
||||
roi_reached = (not (buy and self.ignore_roi_if_buy_signal)
|
||||
# if enter signal and ignore_roi is set, we don't need to evaluate min_roi.
|
||||
roi_reached = (not (enter and self.ignore_roi_if_buy_signal)
|
||||
and self.min_roi_reached(trade=trade, current_profit=current_profit,
|
||||
current_time=date))
|
||||
|
||||
@ -592,10 +610,11 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
if (self.sell_profit_only and current_profit <= self.sell_profit_offset):
|
||||
# sell_profit_only and profit doesn't reach the offset - ignore sell signal
|
||||
pass
|
||||
elif self.use_sell_signal and not buy:
|
||||
if sell:
|
||||
elif self.use_sell_signal and not enter:
|
||||
if exit:
|
||||
sell_signal = SellType.SELL_SIGNAL
|
||||
else:
|
||||
trade_type = "exit_short" if trade.is_short else "sell"
|
||||
custom_reason = strategy_safe_wrapper(self.custom_sell, default_retval=False)(
|
||||
pair=trade.pair, trade=trade, current_time=date, current_rate=current_rate,
|
||||
current_profit=current_profit)
|
||||
@ -603,18 +622,18 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
sell_signal = SellType.CUSTOM_SELL
|
||||
if isinstance(custom_reason, str):
|
||||
if len(custom_reason) > CUSTOM_SELL_MAX_LENGTH:
|
||||
logger.warning(f'Custom sell reason returned from custom_sell is too '
|
||||
f'long and was trimmed to {CUSTOM_SELL_MAX_LENGTH} '
|
||||
f'characters.')
|
||||
logger.warning(f'Custom {trade_type} reason returned from '
|
||||
f'custom_{trade_type} is too long and was trimmed'
|
||||
f'to {CUSTOM_SELL_MAX_LENGTH} characters.')
|
||||
custom_reason = custom_reason[:CUSTOM_SELL_MAX_LENGTH]
|
||||
else:
|
||||
custom_reason = None
|
||||
# TODO: return here if sell-signal should be favored over ROI
|
||||
# TODO: return here if exit-signal should be favored over ROI
|
||||
|
||||
# Start evaluations
|
||||
# Sequence:
|
||||
# ROI (if not stoploss)
|
||||
# Sell-signal
|
||||
# Exit-signal
|
||||
# Stoploss
|
||||
if roi_reached and stoplossflag.sell_type != SellType.STOP_LOSS:
|
||||
logger.debug(f"{trade.pair} - Required profit reached. sell_type=SellType.ROI")
|
||||
@ -632,7 +651,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
return stoplossflag
|
||||
|
||||
# This one is noisy, commented out...
|
||||
# logger.debug(f"{trade.pair} - No sell signal.")
|
||||
# logger.debug(f"{trade.pair} - No exit signal.")
|
||||
return SellCheckTuple(sell_type=SellType.NONE)
|
||||
|
||||
def stop_loss_reached(self, current_rate: float, trade: Trade,
|
||||
@ -641,7 +660,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
high: float = None) -> SellCheckTuple:
|
||||
"""
|
||||
Based on current profit of the trade and configured (trailing) stoploss,
|
||||
decides to sell or not
|
||||
decides to exit or not
|
||||
:param current_profit: current profit as ratio
|
||||
:param low: Low value of this candle, only set in backtesting
|
||||
:param high: High value of this candle, only set in backtesting
|
||||
@ -651,7 +670,12 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
# Initiate stoploss with open_rate. Does nothing if stoploss is already set.
|
||||
trade.adjust_stop_loss(trade.open_rate, stop_loss_value, initial=True)
|
||||
|
||||
if self.use_custom_stoploss and trade.stop_loss < (low or current_rate):
|
||||
dir_correct = (
|
||||
trade.stop_loss < (low or current_rate) and not trade.is_short or
|
||||
trade.stop_loss > (low or current_rate) and trade.is_short
|
||||
)
|
||||
|
||||
if self.use_custom_stoploss and dir_correct:
|
||||
stop_loss_value = strategy_safe_wrapper(self.custom_stoploss, default_retval=None
|
||||
)(pair=trade.pair, trade=trade,
|
||||
current_time=current_time,
|
||||
@ -735,7 +759,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
def ohlcvdata_to_dataframe(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
|
||||
"""
|
||||
Populates indicators for given candle (OHLCV) data (for multiple pairs)
|
||||
Does not run advise_buy or advise_sell!
|
||||
Does not run advise_enter or advise_exit!
|
||||
Used by optimize operations only, not during dry / live runs.
|
||||
Using .copy() to get a fresh copy of the dataframe for every strategy run.
|
||||
Has positive effects on memory usage for whatever reason - also when
|
||||
@ -746,7 +770,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
|
||||
def advise_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Populate indicators that will be used in the Buy and Sell strategy
|
||||
Populate indicators that will be used in the Buy, Sell, short, exit_short strategy
|
||||
This method should not be overridden.
|
||||
:param dataframe: Dataframe with data from the exchange
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
@ -760,37 +784,60 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
else:
|
||||
return self.populate_indicators(dataframe, metadata)
|
||||
|
||||
def advise_buy(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
def advise_enter(
|
||||
self,
|
||||
dataframe: DataFrame,
|
||||
metadata: dict,
|
||||
is_short: bool = False
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
Based on TA indicators, populates the buy/short signal for the given dataframe
|
||||
This method should not be overridden.
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information dictionary, with details like the
|
||||
currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
logger.debug(f"Populating buy signals for pair {metadata.get('pair')}.")
|
||||
(type, fun_len) = (
|
||||
("short", self._short_fun_len)
|
||||
if is_short else
|
||||
("buy", self._buy_fun_len)
|
||||
)
|
||||
|
||||
if self._buy_fun_len == 2:
|
||||
logger.debug(f"Populating {type} signals for pair {metadata.get('pair')}.")
|
||||
|
||||
if fun_len == 2:
|
||||
warnings.warn("deprecated - check out the Sample strategy to see "
|
||||
"the current function headers!", DeprecationWarning)
|
||||
return self.populate_buy_trend(dataframe) # type: ignore
|
||||
return self.populate_enter_trend(dataframe) # type: ignore
|
||||
else:
|
||||
return self.populate_buy_trend(dataframe, metadata)
|
||||
return self.populate_enter_trend(dataframe, metadata)
|
||||
|
||||
def advise_sell(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
def advise_exit(
|
||||
self,
|
||||
dataframe: DataFrame,
|
||||
metadata: dict,
|
||||
is_short: bool = False
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
Based on TA indicators, populates the sell/exit_short signal for the given dataframe
|
||||
This method should not be overridden.
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information dictionary, with details like the
|
||||
currently traded pair
|
||||
:return: DataFrame with sell column
|
||||
"""
|
||||
logger.debug(f"Populating sell signals for pair {metadata.get('pair')}.")
|
||||
if self._sell_fun_len == 2:
|
||||
|
||||
(type, fun_len) = (
|
||||
("exit_short", self._exit_short_fun_len)
|
||||
if is_short else
|
||||
("sell", self._sell_fun_len)
|
||||
)
|
||||
|
||||
logger.debug(f"Populating {type} signals for pair {metadata.get('pair')}.")
|
||||
if fun_len == 2:
|
||||
warnings.warn("deprecated - check out the Sample strategy to see "
|
||||
"the current function headers!", DeprecationWarning)
|
||||
return self.populate_sell_trend(dataframe) # type: ignore
|
||||
return self.populate_exit_trend(dataframe) # type: ignore
|
||||
else:
|
||||
return self.populate_sell_trend(dataframe, metadata)
|
||||
return self.populate_exit_trend(dataframe, metadata)
|
||||
|
@ -58,7 +58,11 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
return dataframe
|
||||
|
||||
|
||||
def stoploss_from_open(open_relative_stop: float, current_profit: float) -> float:
|
||||
def stoploss_from_open(
|
||||
open_relative_stop: float,
|
||||
current_profit: float,
|
||||
for_short: bool = False
|
||||
) -> float:
|
||||
"""
|
||||
|
||||
Given the current profit, and a desired stop loss value relative to the open price,
|
||||
@ -72,14 +76,17 @@ def stoploss_from_open(open_relative_stop: float, current_profit: float) -> floa
|
||||
|
||||
:param open_relative_stop: Desired stop loss percentage relative to open price
|
||||
:param current_profit: The current profit percentage
|
||||
:return: Positive stop loss value relative to current price
|
||||
:return: Stop loss value relative to current price
|
||||
"""
|
||||
|
||||
# formula is undefined for current_profit -1, return maximum value
|
||||
if current_profit == -1:
|
||||
return 1
|
||||
|
||||
stoploss = 1-((1+open_relative_stop)/(1+current_profit))
|
||||
stoploss = 1-((1+open_relative_stop)/(1+current_profit)) # TODO-lev: Is this right?
|
||||
|
||||
# negative stoploss values indicate the requested stop price is higher than the current price
|
||||
if for_short:
|
||||
return min(stoploss, 0.0)
|
||||
else:
|
||||
return max(stoploss, 0.0)
|
||||
|
@ -172,3 +172,125 @@ class SampleHyperOpt(IHyperOpt):
|
||||
return dataframe
|
||||
|
||||
return populate_sell_trend
|
||||
|
||||
@staticmethod
|
||||
def short_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the short strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_short_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use.
|
||||
"""
|
||||
conditions = []
|
||||
|
||||
# GUARDS AND TRENDS
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] > params['mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] > params['fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] < params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] > params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if 'trigger' in params:
|
||||
if params['trigger'] == 'bb_upper':
|
||||
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_short_trend
|
||||
|
||||
@staticmethod
|
||||
def short_indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching short strategy parameters.
|
||||
"""
|
||||
return [
|
||||
Integer(75, 90, name='mfi-value'),
|
||||
Integer(55, 85, name='fastd-value'),
|
||||
Integer(50, 80, name='adx-value'),
|
||||
Integer(60, 80, name='rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_upper', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def exit_short_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the exit_short strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_exit_short_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Exit_short strategy Hyperopt will build and use.
|
||||
"""
|
||||
conditions = []
|
||||
|
||||
# GUARDS AND TRENDS
|
||||
if 'exit-short-mfi-enabled' in params and params['exit-short-mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['exit-short-mfi-value'])
|
||||
if 'exit-short-fastd-enabled' in params and params['exit-short-fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['exit-short-fastd-value'])
|
||||
if 'exit-short-adx-enabled' in params and params['exit-short-adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['exit-short-adx-value'])
|
||||
if 'exit-short-rsi-enabled' in params and params['exit-short-rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['exit-short-rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if 'exit-short-trigger' in params:
|
||||
if params['exit-short-trigger'] == 'exit-short-bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['exit-short-trigger'] == 'exit-short-macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['macdsignal'], dataframe['macd']
|
||||
))
|
||||
if params['exit-short-trigger'] == 'exit-short-sar_reversal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['sar'], dataframe['close']
|
||||
))
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'exit_short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_exit_short_trend
|
||||
|
||||
@staticmethod
|
||||
def exit_short_indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching exit short strategy parameters.
|
||||
"""
|
||||
return [
|
||||
Integer(1, 25, name='exit_short-mfi-value'),
|
||||
Integer(1, 50, name='exit_short-fastd-value'),
|
||||
Integer(1, 50, name='exit_short-adx-value'),
|
||||
Integer(1, 40, name='exit_short-rsi-value'),
|
||||
Categorical([True, False], name='exit_short-mfi-enabled'),
|
||||
Categorical([True, False], name='exit_short-fastd-enabled'),
|
||||
Categorical([True, False], name='exit_short-adx-enabled'),
|
||||
Categorical([True, False], name='exit_short-rsi-enabled'),
|
||||
Categorical(['exit_short-bb_lower',
|
||||
'exit_short-macd_cross_signal',
|
||||
'exit_short-sar_reversal'], name='exit_short-trigger')
|
||||
]
|
||||
|
@ -187,9 +187,132 @@ class AdvancedSampleHyperOpt(IHyperOpt):
|
||||
|
||||
return populate_sell_trend
|
||||
|
||||
@staticmethod
|
||||
def short_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the short strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_short_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use.
|
||||
"""
|
||||
conditions = []
|
||||
|
||||
# GUARDS AND TRENDS
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] > params['mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] > params['fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] < params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] > params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if 'trigger' in params:
|
||||
if params['trigger'] == 'bb_upper':
|
||||
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_short_trend
|
||||
|
||||
@staticmethod
|
||||
def short_indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching short strategy parameters.
|
||||
"""
|
||||
return [
|
||||
Integer(75, 90, name='mfi-value'),
|
||||
Integer(55, 85, name='fastd-value'),
|
||||
Integer(50, 80, name='adx-value'),
|
||||
Integer(60, 80, name='rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_upper', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def exit_short_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the exit_short strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_exit_short_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Exit_short strategy Hyperopt will build and use.
|
||||
"""
|
||||
conditions = []
|
||||
|
||||
# GUARDS AND TRENDS
|
||||
if 'exit-short-mfi-enabled' in params and params['exit-short-mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['exit-short-mfi-value'])
|
||||
if 'exit-short-fastd-enabled' in params and params['exit-short-fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['exit-short-fastd-value'])
|
||||
if 'exit-short-adx-enabled' in params and params['exit-short-adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['exit-short-adx-value'])
|
||||
if 'exit-short-rsi-enabled' in params and params['exit-short-rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['exit-short-rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if 'exit-short-trigger' in params:
|
||||
if params['exit-short-trigger'] == 'exit-short-bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['exit-short-trigger'] == 'exit-short-macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['macdsignal'], dataframe['macd']
|
||||
))
|
||||
if params['exit-short-trigger'] == 'exit-short-sar_reversal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['sar'], dataframe['close']
|
||||
))
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'exit_short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_exit_short_trend
|
||||
|
||||
@staticmethod
|
||||
def exit_short_indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching exit short strategy parameters.
|
||||
"""
|
||||
return [
|
||||
Integer(1, 25, name='exit_short-mfi-value'),
|
||||
Integer(1, 50, name='exit_short-fastd-value'),
|
||||
Integer(1, 50, name='exit_short-adx-value'),
|
||||
Integer(1, 40, name='exit_short-rsi-value'),
|
||||
Categorical([True, False], name='exit_short-mfi-enabled'),
|
||||
Categorical([True, False], name='exit_short-fastd-enabled'),
|
||||
Categorical([True, False], name='exit_short-adx-enabled'),
|
||||
Categorical([True, False], name='exit_short-rsi-enabled'),
|
||||
Categorical(['exit_short-bb_lower',
|
||||
'exit_short-macd_cross_signal',
|
||||
'exit_short-sar_reversal'], name='exit_short-trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||
"""
|
||||
# TODO-lev?
|
||||
Generate the ROI table that will be used by Hyperopt
|
||||
|
||||
This implementation generates the default legacy Freqtrade ROI tables.
|
||||
@ -211,6 +334,7 @@ class AdvancedSampleHyperOpt(IHyperOpt):
|
||||
@staticmethod
|
||||
def roi_space() -> List[Dimension]:
|
||||
"""
|
||||
# TODO-lev?
|
||||
Values to search for each ROI steps
|
||||
|
||||
Override it if you need some different ranges for the parameters in the
|
||||
@ -231,6 +355,7 @@ class AdvancedSampleHyperOpt(IHyperOpt):
|
||||
@staticmethod
|
||||
def stoploss_space() -> List[Dimension]:
|
||||
"""
|
||||
# TODO-lev?
|
||||
Stoploss Value to search
|
||||
|
||||
Override it if you need some different range for the parameter in the
|
||||
@ -243,6 +368,7 @@ class AdvancedSampleHyperOpt(IHyperOpt):
|
||||
@staticmethod
|
||||
def trailing_space() -> List[Dimension]:
|
||||
"""
|
||||
# TODO-lev?
|
||||
Create a trailing stoploss space.
|
||||
|
||||
You may override it in your custom Hyperopt class.
|
||||
|
@ -29,7 +29,7 @@ class SampleStrategy(IStrategy):
|
||||
|
||||
You must keep:
|
||||
- the lib in the section "Do not remove these libs"
|
||||
- the methods: populate_indicators, populate_buy_trend, populate_sell_trend
|
||||
- the methods: populate_indicators, populate_buy_trend, populate_sell_trend, populate_short_trend, populate_exit_short_trend
|
||||
You should keep:
|
||||
- timeframe, minimal_roi, stoploss, trailing_*
|
||||
"""
|
||||
@ -58,6 +58,8 @@ class SampleStrategy(IStrategy):
|
||||
# Hyperoptable parameters
|
||||
buy_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
|
||||
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell', optimize=True, load=True)
|
||||
short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True)
|
||||
exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
|
||||
|
||||
# Optimal timeframe for the strategy.
|
||||
timeframe = '5m'
|
||||
@ -373,3 +375,40 @@ class SampleStrategy(IStrategy):
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
|
||||
def populate_short_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the short signal for the given dataframe
|
||||
:param dataframe: DataFrame populated with indicators
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with short column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
# Signal: RSI crosses above 70
|
||||
(qtpylib.crossed_above(dataframe['rsi'], self.short_rsi.value)) &
|
||||
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
|
||||
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
|
||||
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
||||
),
|
||||
'short'] = 1
|
||||
return dataframe
|
||||
|
||||
def populate_exit_short_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the exit_short signal for the given dataframe
|
||||
:param dataframe: DataFrame populated with indicators
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with exit_short column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
# Signal: RSI crosses above 30
|
||||
(qtpylib.crossed_above(dataframe['rsi'], self.exit_short_rsi.value)) &
|
||||
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard: tema below BB middle
|
||||
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising
|
||||
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
||||
),
|
||||
'exit_short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
@ -105,6 +105,66 @@ class DefaultHyperOpt(IHyperOpt):
|
||||
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def short_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the short strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_short_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use.
|
||||
"""
|
||||
conditions = []
|
||||
|
||||
# GUARDS AND TRENDS
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] > params['mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] > params['fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] < params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] > params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if 'trigger' in params:
|
||||
if params['trigger'] == 'bb_upper':
|
||||
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_short_trend
|
||||
|
||||
@staticmethod
|
||||
def short_indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching short strategy parameters.
|
||||
"""
|
||||
return [
|
||||
Integer(75, 90, name='mfi-value'),
|
||||
Integer(55, 85, name='fastd-value'),
|
||||
Integer(50, 80, name='adx-value'),
|
||||
Integer(60, 80, name='rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_upper', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
@ -148,6 +208,49 @@ class DefaultHyperOpt(IHyperOpt):
|
||||
|
||||
return populate_sell_trend
|
||||
|
||||
@staticmethod
|
||||
def exit_short_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the exit_short strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_exit_short_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Exit_short strategy Hyperopt will build and use.
|
||||
"""
|
||||
conditions = []
|
||||
|
||||
# GUARDS AND TRENDS
|
||||
if 'exit-short-mfi-enabled' in params and params['exit-short-mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['exit-short-mfi-value'])
|
||||
if 'exit-short-fastd-enabled' in params and params['exit-short-fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['exit-short-fastd-value'])
|
||||
if 'exit-short-adx-enabled' in params and params['exit-short-adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['exit-short-adx-value'])
|
||||
if 'exit-short-rsi-enabled' in params and params['exit-short-rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['exit-short-rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if 'exit-short-trigger' in params:
|
||||
if params['exit-short-trigger'] == 'exit-short-bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['exit-short-trigger'] == 'exit-short-macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['macdsignal'], dataframe['macd']
|
||||
))
|
||||
if params['exit-short-trigger'] == 'exit-short-sar_reversal':
|
||||
conditions.append(qtpylib.crossed_below(
|
||||
dataframe['sar'], dataframe['close']
|
||||
))
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'exit_short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_exit_short_trend
|
||||
|
||||
@staticmethod
|
||||
def sell_indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
@ -167,6 +270,25 @@ class DefaultHyperOpt(IHyperOpt):
|
||||
'sell-sar_reversal'], name='sell-trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def exit_short_indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching exit short strategy parameters.
|
||||
"""
|
||||
return [
|
||||
Integer(1, 25, name='exit_short-mfi-value'),
|
||||
Integer(1, 50, name='exit_short-fastd-value'),
|
||||
Integer(1, 50, name='exit_short-adx-value'),
|
||||
Integer(1, 40, name='exit_short-rsi-value'),
|
||||
Categorical([True, False], name='exit_short-mfi-enabled'),
|
||||
Categorical([True, False], name='exit_short-fastd-enabled'),
|
||||
Categorical([True, False], name='exit_short-adx-enabled'),
|
||||
Categorical([True, False], name='exit_short-rsi-enabled'),
|
||||
Categorical(['exit_short-bb_lower',
|
||||
'exit_short-macd_cross_signal',
|
||||
'exit_short-sar_reversal'], name='exit_short-trigger')
|
||||
]
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators. Should be a copy of same method from strategy.
|
||||
@ -200,3 +322,37 @@ class DefaultHyperOpt(IHyperOpt):
|
||||
'sell'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_short_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators. Should be a copy of same method from strategy.
|
||||
Must align to populate_indicators in this file.
|
||||
Only used when --spaces does not include short space.
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['close'] > dataframe['bb_upperband']) &
|
||||
(dataframe['mfi'] < 84) &
|
||||
(dataframe['adx'] > 75) &
|
||||
(dataframe['rsi'] < 79)
|
||||
),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_exit_short_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators. Should be a copy of same method from strategy.
|
||||
Must align to populate_indicators in this file.
|
||||
Only used when --spaces does not include exit_short space.
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(qtpylib.crossed_below(
|
||||
dataframe['macdsignal'], dataframe['macd']
|
||||
)) &
|
||||
(dataframe['fastd'] < 46)
|
||||
),
|
||||
'sell'] = 1
|
||||
|
||||
return dataframe
|
||||
|
@ -597,8 +597,8 @@ def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
backtesting.required_startup = 0
|
||||
backtesting.strategy.advise_buy = lambda a, m: frame
|
||||
backtesting.strategy.advise_sell = lambda a, m: frame
|
||||
backtesting.strategy.advise_enter = lambda a, m: frame
|
||||
backtesting.strategy.advise_exit = lambda a, m: frame
|
||||
backtesting.strategy.use_custom_stoploss = data.use_custom_stoploss
|
||||
caplog.set_level(logging.DEBUG)
|
||||
|
||||
|
@ -290,8 +290,8 @@ def test_backtesting_init(mocker, default_conf, order_types) -> None:
|
||||
assert backtesting.config == default_conf
|
||||
assert backtesting.timeframe == '5m'
|
||||
assert callable(backtesting.strategy.ohlcvdata_to_dataframe)
|
||||
assert callable(backtesting.strategy.advise_buy)
|
||||
assert callable(backtesting.strategy.advise_sell)
|
||||
assert callable(backtesting.strategy.advise_enter)
|
||||
assert callable(backtesting.strategy.advise_exit)
|
||||
assert isinstance(backtesting.strategy.dp, DataProvider)
|
||||
get_fee.assert_called()
|
||||
assert backtesting.fee == 0.5
|
||||
@ -700,8 +700,8 @@ def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
backtesting.strategy.advise_buy = fun # Override
|
||||
backtesting.strategy.advise_sell = fun # Override
|
||||
backtesting.strategy.advise_enter = fun # Override
|
||||
backtesting.strategy.advise_exit = fun # Override
|
||||
result = backtesting.backtest(**backtest_conf)
|
||||
assert result['results'].empty
|
||||
|
||||
@ -716,8 +716,8 @@ def test_backtest_only_sell(mocker, default_conf, testdatadir):
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
backtesting.strategy.advise_buy = fun # Override
|
||||
backtesting.strategy.advise_sell = fun # Override
|
||||
backtesting.strategy.advise_enter = fun # Override
|
||||
backtesting.strategy.advise_exit = fun # Override
|
||||
result = backtesting.backtest(**backtest_conf)
|
||||
assert result['results'].empty
|
||||
|
||||
@ -731,8 +731,8 @@ def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.required_startup = 0
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
backtesting.strategy.advise_buy = _trend_alternate # Override
|
||||
backtesting.strategy.advise_sell = _trend_alternate # Override
|
||||
backtesting.strategy.advise_enter = _trend_alternate # Override
|
||||
backtesting.strategy.advise_exit = _trend_alternate # Override
|
||||
result = backtesting.backtest(**backtest_conf)
|
||||
# 200 candles in backtest data
|
||||
# won't buy on first (shifted by 1)
|
||||
@ -777,8 +777,8 @@ def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir)
|
||||
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
backtesting.strategy.advise_buy = _trend_alternate_hold # Override
|
||||
backtesting.strategy.advise_sell = _trend_alternate_hold # Override
|
||||
backtesting.strategy.advise_enter = _trend_alternate_hold # Override
|
||||
backtesting.strategy.advise_exit = _trend_alternate_hold # Override
|
||||
|
||||
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
|
||||
min_date, max_date = get_timerange(processed)
|
||||
|
@ -25,6 +25,9 @@ from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
|
||||
from .hyperopts.default_hyperopt import DefaultHyperOpt
|
||||
|
||||
|
||||
# TODO-lev: This file
|
||||
|
||||
|
||||
def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
@ -363,8 +366,8 @@ def test_start_calls_optimizer(mocker, hyperopt_conf, capsys) -> None:
|
||||
# Should be called for historical candle data
|
||||
assert dumper.call_count == 1
|
||||
assert dumper2.call_count == 1
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_exit")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_enter")
|
||||
assert hasattr(hyperopt, "max_open_trades")
|
||||
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
|
||||
assert hasattr(hyperopt, "position_stacking")
|
||||
@ -822,8 +825,8 @@ def test_simplified_interface_roi_stoploss(mocker, hyperopt_conf, capsys) -> Non
|
||||
assert dumper.call_count == 1
|
||||
assert dumper2.call_count == 1
|
||||
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_exit")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_enter")
|
||||
assert hasattr(hyperopt, "max_open_trades")
|
||||
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
|
||||
assert hasattr(hyperopt, "position_stacking")
|
||||
@ -903,8 +906,8 @@ def test_simplified_interface_buy(mocker, hyperopt_conf, capsys) -> None:
|
||||
assert dumper.called
|
||||
assert dumper.call_count == 1
|
||||
assert dumper2.call_count == 1
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_exit")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_enter")
|
||||
assert hasattr(hyperopt, "max_open_trades")
|
||||
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
|
||||
assert hasattr(hyperopt, "position_stacking")
|
||||
@ -957,8 +960,8 @@ def test_simplified_interface_sell(mocker, hyperopt_conf, capsys) -> None:
|
||||
assert dumper.called
|
||||
assert dumper.call_count == 1
|
||||
assert dumper2.call_count == 1
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_exit")
|
||||
assert hasattr(hyperopt.backtesting.strategy, "advise_enter")
|
||||
assert hasattr(hyperopt, "max_open_trades")
|
||||
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
|
||||
assert hasattr(hyperopt, "position_stacking")
|
||||
|
@ -264,7 +264,7 @@ def test_api_UvicornServer(mocker):
|
||||
assert thread_mock.call_count == 1
|
||||
|
||||
s.cleanup()
|
||||
assert s.should_exit is True
|
||||
assert s.should_sell is True
|
||||
|
||||
|
||||
def test_api_UvicornServer_run(mocker):
|
||||
|
@ -154,3 +154,48 @@ class DefaultStrategy(IStrategy):
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
|
||||
def populate_short_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the short signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with short column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['rsi'] > 65) &
|
||||
(dataframe['fastd'] > 65) &
|
||||
(dataframe['adx'] < 70) &
|
||||
(dataframe['plus_di'] < 0.5) # TODO-lev: What to do here
|
||||
) |
|
||||
(
|
||||
(dataframe['adx'] < 35) &
|
||||
(dataframe['plus_di'] < 0.5) # TODO-lev: What to do here
|
||||
),
|
||||
'short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_exit_short_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the exit_short signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with exit_short column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(
|
||||
(qtpylib.crossed_below(dataframe['rsi'], 30)) |
|
||||
(qtpylib.crossed_below(dataframe['fastd'], 30))
|
||||
) &
|
||||
(dataframe['adx'] < 90) &
|
||||
(dataframe['minus_di'] < 0) # TODO-lev: what to do here
|
||||
) |
|
||||
(
|
||||
(dataframe['adx'] > 30) &
|
||||
(dataframe['minus_di'] < 0.5) # TODO-lev: what to do here
|
||||
),
|
||||
'exit_short'] = 1
|
||||
return dataframe
|
||||
|
@ -60,6 +60,15 @@ class HyperoptableStrategy(IStrategy):
|
||||
'sell_minusdi': 0.4
|
||||
}
|
||||
|
||||
short_params = {
|
||||
'short_rsi': 65,
|
||||
}
|
||||
|
||||
exit_short_params = {
|
||||
'exit_short_rsi': 26,
|
||||
'exit_short_minusdi': 0.6
|
||||
}
|
||||
|
||||
buy_rsi = IntParameter([0, 50], default=30, space='buy')
|
||||
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space='buy')
|
||||
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell')
|
||||
@ -78,6 +87,12 @@ class HyperoptableStrategy(IStrategy):
|
||||
})
|
||||
return prot
|
||||
|
||||
short_rsi = IntParameter([50, 100], default=70, space='sell')
|
||||
short_plusdi = RealParameter(low=0, high=1, default=0.5, space='sell')
|
||||
exit_short_rsi = IntParameter(low=0, high=50, default=30, space='buy')
|
||||
exit_short_minusdi = DecimalParameter(low=0, high=1, default=0.4999, decimals=3, space='buy',
|
||||
load=False)
|
||||
|
||||
def informative_pairs(self):
|
||||
"""
|
||||
Define additional, informative pair/interval combinations to be cached from the exchange.
|
||||
@ -167,7 +182,7 @@ class HyperoptableStrategy(IStrategy):
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
:return: DataFrame with sell column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
@ -184,3 +199,48 @@ class HyperoptableStrategy(IStrategy):
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
|
||||
def populate_short_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the short signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with short column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['rsi'] > self.short_rsi.value) &
|
||||
(dataframe['fastd'] > 65) &
|
||||
(dataframe['adx'] < 70) &
|
||||
(dataframe['plus_di'] < self.short_plusdi.value)
|
||||
) |
|
||||
(
|
||||
(dataframe['adx'] < 35) &
|
||||
(dataframe['plus_di'] < self.short_plusdi.value)
|
||||
),
|
||||
'short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_exit_short_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the exit_short signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with exit_short column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(
|
||||
(qtpylib.crossed_below(dataframe['rsi'], self.exit_short_rsi.value)) |
|
||||
(qtpylib.crossed_below(dataframe['fastd'], 30))
|
||||
) &
|
||||
(dataframe['adx'] < 90) &
|
||||
(dataframe['minus_di'] < 0) # TODO-lev: What should this be
|
||||
) |
|
||||
(
|
||||
(dataframe['adx'] < 30) &
|
||||
(dataframe['minus_di'] < self.exit_short_minusdi.value)
|
||||
),
|
||||
'exit_short'] = 1
|
||||
return dataframe
|
||||
|
@ -85,3 +85,34 @@ class TestStrategyLegacy(IStrategy):
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
|
||||
def populate_short_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 30) &
|
||||
(dataframe['tema'] > dataframe['tema'].shift(1)) &
|
||||
(dataframe['volume'] > 0)
|
||||
),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_exit_short_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 70) &
|
||||
(dataframe['tema'] < dataframe['tema'].shift(1)) &
|
||||
(dataframe['volume'] > 0)
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
|
@ -14,6 +14,8 @@ def test_default_strategy_structure():
|
||||
assert hasattr(DefaultStrategy, 'populate_indicators')
|
||||
assert hasattr(DefaultStrategy, 'populate_buy_trend')
|
||||
assert hasattr(DefaultStrategy, 'populate_sell_trend')
|
||||
assert hasattr(DefaultStrategy, 'populate_short_trend')
|
||||
assert hasattr(DefaultStrategy, 'populate_exit_short_trend')
|
||||
|
||||
|
||||
def test_default_strategy(result, fee):
|
||||
@ -27,6 +29,10 @@ def test_default_strategy(result, fee):
|
||||
assert type(indicators) is DataFrame
|
||||
assert type(strategy.populate_buy_trend(indicators, metadata)) is DataFrame
|
||||
assert type(strategy.populate_sell_trend(indicators, metadata)) is DataFrame
|
||||
# TODO-lev: I think these two should be commented out in the strategy by default
|
||||
# TODO-lev: so they can be tested, but the tests can't really remain
|
||||
assert type(strategy.populate_short_trend(indicators, metadata)) is DataFrame
|
||||
assert type(strategy.populate_exit_short_trend(indicators, metadata)) is DataFrame
|
||||
|
||||
trade = Trade(
|
||||
open_rate=19_000,
|
||||
@ -37,10 +43,28 @@ def test_default_strategy(result, fee):
|
||||
|
||||
assert strategy.confirm_trade_entry(pair='ETH/BTC', order_type='limit', amount=0.1,
|
||||
rate=20000, time_in_force='gtc',
|
||||
current_time=datetime.utcnow()) is True
|
||||
is_short=False, current_time=datetime.utcnow()) is True
|
||||
|
||||
assert strategy.confirm_trade_exit(pair='ETH/BTC', trade=trade, order_type='limit', amount=0.1,
|
||||
rate=20000, time_in_force='gtc', sell_reason='roi',
|
||||
current_time=datetime.utcnow()) is True
|
||||
is_short=False, current_time=datetime.utcnow()) is True
|
||||
|
||||
# TODO-lev: Test for shorts?
|
||||
assert strategy.custom_stoploss(pair='ETH/BTC', trade=trade, current_time=datetime.now(),
|
||||
current_rate=20_000, current_profit=0.05) == strategy.stoploss
|
||||
|
||||
short_trade = Trade(
|
||||
open_rate=21_000,
|
||||
amount=0.1,
|
||||
pair='ETH/BTC',
|
||||
fee_open=fee.return_value
|
||||
)
|
||||
|
||||
assert strategy.confirm_trade_entry(pair='ETH/BTC', order_type='limit', amount=0.1,
|
||||
rate=20000, time_in_force='gtc',
|
||||
is_short=True, current_time=datetime.utcnow()) is True
|
||||
|
||||
assert strategy.confirm_trade_exit(pair='ETH/BTC', trade=short_trade, order_type='limit',
|
||||
amount=0.1, rate=20000, time_in_force='gtc',
|
||||
sell_reason='roi', is_short=True,
|
||||
current_time=datetime.utcnow()) is True
|
||||
|
@ -156,17 +156,21 @@ def test_ignore_expired_candle(default_conf):
|
||||
# Add 1 candle length as the "latest date" defines candle open.
|
||||
current_time = latest_date + timedelta(seconds=80 + 300)
|
||||
|
||||
assert strategy.ignore_expired_candle(latest_date=latest_date,
|
||||
assert strategy.ignore_expired_candle(
|
||||
latest_date=latest_date,
|
||||
current_time=current_time,
|
||||
timeframe_seconds=300,
|
||||
buy=True) is True
|
||||
enter=True
|
||||
) is True
|
||||
|
||||
current_time = latest_date + timedelta(seconds=30 + 300)
|
||||
|
||||
assert not strategy.ignore_expired_candle(latest_date=latest_date,
|
||||
assert not strategy.ignore_expired_candle(
|
||||
latest_date=latest_date,
|
||||
current_time=current_time,
|
||||
timeframe_seconds=300,
|
||||
buy=True) is True
|
||||
enter=True
|
||||
) is True
|
||||
|
||||
|
||||
def test_assert_df_raise(mocker, caplog, ohlcv_history):
|
||||
@ -478,20 +482,20 @@ def test_custom_sell(default_conf, fee, caplog) -> None:
|
||||
def test_analyze_ticker_default(ohlcv_history, mocker, caplog) -> None:
|
||||
caplog.set_level(logging.DEBUG)
|
||||
ind_mock = MagicMock(side_effect=lambda x, meta: x)
|
||||
buy_mock = MagicMock(side_effect=lambda x, meta: x)
|
||||
sell_mock = MagicMock(side_effect=lambda x, meta: x)
|
||||
enter_mock = MagicMock(side_effect=lambda x, meta, is_short: x)
|
||||
exit_mock = MagicMock(side_effect=lambda x, meta, is_short: x)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.strategy.interface.IStrategy',
|
||||
advise_indicators=ind_mock,
|
||||
advise_buy=buy_mock,
|
||||
advise_sell=sell_mock,
|
||||
advise_enter=enter_mock,
|
||||
advise_exit=exit_mock,
|
||||
|
||||
)
|
||||
strategy = DefaultStrategy({})
|
||||
strategy.analyze_ticker(ohlcv_history, {'pair': 'ETH/BTC'})
|
||||
assert ind_mock.call_count == 1
|
||||
assert buy_mock.call_count == 1
|
||||
assert buy_mock.call_count == 1
|
||||
assert enter_mock.call_count == 2
|
||||
assert enter_mock.call_count == 2
|
||||
|
||||
assert log_has('TA Analysis Launched', caplog)
|
||||
assert not log_has('Skipping TA Analysis for already analyzed candle', caplog)
|
||||
@ -500,8 +504,8 @@ def test_analyze_ticker_default(ohlcv_history, mocker, caplog) -> None:
|
||||
strategy.analyze_ticker(ohlcv_history, {'pair': 'ETH/BTC'})
|
||||
# No analysis happens as process_only_new_candles is true
|
||||
assert ind_mock.call_count == 2
|
||||
assert buy_mock.call_count == 2
|
||||
assert buy_mock.call_count == 2
|
||||
assert enter_mock.call_count == 4
|
||||
assert enter_mock.call_count == 4
|
||||
assert log_has('TA Analysis Launched', caplog)
|
||||
assert not log_has('Skipping TA Analysis for already analyzed candle', caplog)
|
||||
|
||||
@ -509,13 +513,13 @@ def test_analyze_ticker_default(ohlcv_history, mocker, caplog) -> None:
|
||||
def test__analyze_ticker_internal_skip_analyze(ohlcv_history, mocker, caplog) -> None:
|
||||
caplog.set_level(logging.DEBUG)
|
||||
ind_mock = MagicMock(side_effect=lambda x, meta: x)
|
||||
buy_mock = MagicMock(side_effect=lambda x, meta: x)
|
||||
sell_mock = MagicMock(side_effect=lambda x, meta: x)
|
||||
enter_mock = MagicMock(side_effect=lambda x, meta, is_short: x)
|
||||
exit_mock = MagicMock(side_effect=lambda x, meta, is_short: x)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.strategy.interface.IStrategy',
|
||||
advise_indicators=ind_mock,
|
||||
advise_buy=buy_mock,
|
||||
advise_sell=sell_mock,
|
||||
advise_enter=enter_mock,
|
||||
advise_exit=exit_mock,
|
||||
|
||||
)
|
||||
strategy = DefaultStrategy({})
|
||||
@ -528,8 +532,8 @@ def test__analyze_ticker_internal_skip_analyze(ohlcv_history, mocker, caplog) ->
|
||||
assert 'close' in ret.columns
|
||||
assert isinstance(ret, DataFrame)
|
||||
assert ind_mock.call_count == 1
|
||||
assert buy_mock.call_count == 1
|
||||
assert buy_mock.call_count == 1
|
||||
assert enter_mock.call_count == 2 # Once for buy, once for short
|
||||
assert enter_mock.call_count == 2
|
||||
assert log_has('TA Analysis Launched', caplog)
|
||||
assert not log_has('Skipping TA Analysis for already analyzed candle', caplog)
|
||||
caplog.clear()
|
||||
@ -537,8 +541,8 @@ def test__analyze_ticker_internal_skip_analyze(ohlcv_history, mocker, caplog) ->
|
||||
ret = strategy._analyze_ticker_internal(ohlcv_history, {'pair': 'ETH/BTC'})
|
||||
# No analysis happens as process_only_new_candles is true
|
||||
assert ind_mock.call_count == 1
|
||||
assert buy_mock.call_count == 1
|
||||
assert buy_mock.call_count == 1
|
||||
assert enter_mock.call_count == 2
|
||||
assert enter_mock.call_count == 2
|
||||
# only skipped analyze adds buy and sell columns, otherwise it's all mocked
|
||||
assert 'buy' in ret.columns
|
||||
assert 'sell' in ret.columns
|
||||
@ -743,10 +747,10 @@ def test_auto_hyperopt_interface(default_conf):
|
||||
assert strategy.sell_minusdi.value == 0.5
|
||||
all_params = strategy.detect_all_parameters()
|
||||
assert isinstance(all_params, dict)
|
||||
assert len(all_params['buy']) == 2
|
||||
assert len(all_params['sell']) == 2
|
||||
# Number of Hyperoptable parameters
|
||||
assert all_params['count'] == 6
|
||||
# TODO-lev: Should these be 4,4 and 10?
|
||||
assert len(all_params['buy']) == 4
|
||||
assert len(all_params['sell']) == 4
|
||||
assert all_params['count'] == 10
|
||||
|
||||
strategy.__class__.sell_rsi = IntParameter([0, 10], default=5, space='buy')
|
||||
|
||||
|
@ -117,12 +117,18 @@ def test_strategy(result, default_conf):
|
||||
df_indicators = strategy.advise_indicators(result, metadata=metadata)
|
||||
assert 'adx' in df_indicators
|
||||
|
||||
dataframe = strategy.advise_buy(df_indicators, metadata=metadata)
|
||||
dataframe = strategy.advise_enter(df_indicators, metadata=metadata, is_short=False)
|
||||
assert 'buy' in dataframe.columns
|
||||
|
||||
dataframe = strategy.advise_sell(df_indicators, metadata=metadata)
|
||||
dataframe = strategy.advise_exit(df_indicators, metadata=metadata, is_short=False)
|
||||
assert 'sell' in dataframe.columns
|
||||
|
||||
dataframe = strategy.advise_enter(df_indicators, metadata=metadata, is_short=True)
|
||||
assert 'short' in dataframe.columns
|
||||
|
||||
dataframe = strategy.advise_exit(df_indicators, metadata=metadata, is_short=True)
|
||||
assert 'exit_short' in dataframe.columns
|
||||
|
||||
|
||||
def test_strategy_override_minimal_roi(caplog, default_conf):
|
||||
caplog.set_level(logging.INFO)
|
||||
@ -218,6 +224,7 @@ def test_strategy_override_process_only_new_candles(caplog, default_conf):
|
||||
def test_strategy_override_order_types(caplog, default_conf):
|
||||
caplog.set_level(logging.INFO)
|
||||
|
||||
# TODO-lev: Maybe change
|
||||
order_types = {
|
||||
'buy': 'market',
|
||||
'sell': 'limit',
|
||||
@ -345,7 +352,7 @@ def test_deprecate_populate_indicators(result, default_conf):
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
# Cause all warnings to always be triggered.
|
||||
warnings.simplefilter("always")
|
||||
strategy.advise_buy(indicators, {'pair': 'ETH/BTC'})
|
||||
strategy.advise_enter(indicators, {'pair': 'ETH/BTC'}, is_short=False) # TODO-lev
|
||||
assert len(w) == 1
|
||||
assert issubclass(w[-1].category, DeprecationWarning)
|
||||
assert "deprecated - check out the Sample strategy to see the current function headers!" \
|
||||
@ -354,7 +361,7 @@ def test_deprecate_populate_indicators(result, default_conf):
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
# Cause all warnings to always be triggered.
|
||||
warnings.simplefilter("always")
|
||||
strategy.advise_sell(indicators, {'pair': 'ETH_BTC'})
|
||||
strategy.advise_exit(indicators, {'pair': 'ETH_BTC'}, is_short=False) # TODO-lev
|
||||
assert len(w) == 1
|
||||
assert issubclass(w[-1].category, DeprecationWarning)
|
||||
assert "deprecated - check out the Sample strategy to see the current function headers!" \
|
||||
@ -374,6 +381,8 @@ def test_call_deprecated_function(result, monkeypatch, default_conf, caplog):
|
||||
assert strategy._populate_fun_len == 2
|
||||
assert strategy._buy_fun_len == 2
|
||||
assert strategy._sell_fun_len == 2
|
||||
# assert strategy._short_fun_len == 2
|
||||
# assert strategy._exit_short_fun_len == 2
|
||||
assert strategy.INTERFACE_VERSION == 1
|
||||
assert strategy.timeframe == '5m'
|
||||
assert strategy.ticker_interval == '5m'
|
||||
@ -382,14 +391,22 @@ def test_call_deprecated_function(result, monkeypatch, default_conf, caplog):
|
||||
assert isinstance(indicator_df, DataFrame)
|
||||
assert 'adx' in indicator_df.columns
|
||||
|
||||
buydf = strategy.advise_buy(result, metadata=metadata)
|
||||
buydf = strategy.advise_enter(result, metadata=metadata, is_short=False)
|
||||
assert isinstance(buydf, DataFrame)
|
||||
assert 'buy' in buydf.columns
|
||||
|
||||
selldf = strategy.advise_sell(result, metadata=metadata)
|
||||
selldf = strategy.advise_exit(result, metadata=metadata, is_short=False)
|
||||
assert isinstance(selldf, DataFrame)
|
||||
assert 'sell' in selldf
|
||||
|
||||
# shortdf = strategy.advise_enter(result, metadata=metadata, is_short=True)
|
||||
# assert isinstance(shortdf, DataFrame)
|
||||
# assert 'short' in shortdf.columns
|
||||
|
||||
# exit_shortdf = strategy.advise_exit(result, metadata=metadata, is_short=True)
|
||||
# assert isinstance(exit_shortdf, DataFrame)
|
||||
# assert 'exit_short' in exit_shortdf
|
||||
|
||||
assert log_has("DEPRECATED: Please migrate to using 'timeframe' instead of 'ticker_interval'.",
|
||||
caplog)
|
||||
|
||||
@ -403,16 +420,26 @@ def test_strategy_interface_versioning(result, monkeypatch, default_conf):
|
||||
assert strategy._populate_fun_len == 3
|
||||
assert strategy._buy_fun_len == 3
|
||||
assert strategy._sell_fun_len == 3
|
||||
assert strategy._short_fun_len == 3
|
||||
assert strategy._exit_short_fun_len == 3
|
||||
assert strategy.INTERFACE_VERSION == 2
|
||||
|
||||
indicator_df = strategy.advise_indicators(result, metadata=metadata)
|
||||
assert isinstance(indicator_df, DataFrame)
|
||||
assert 'adx' in indicator_df.columns
|
||||
|
||||
buydf = strategy.advise_buy(result, metadata=metadata)
|
||||
buydf = strategy.advise_enter(result, metadata=metadata, is_short=False)
|
||||
assert isinstance(buydf, DataFrame)
|
||||
assert 'buy' in buydf.columns
|
||||
|
||||
selldf = strategy.advise_sell(result, metadata=metadata)
|
||||
selldf = strategy.advise_exit(result, metadata=metadata, is_short=False)
|
||||
assert isinstance(selldf, DataFrame)
|
||||
assert 'sell' in selldf
|
||||
|
||||
shortdf = strategy.advise_enter(result, metadata=metadata, is_short=True)
|
||||
assert isinstance(shortdf, DataFrame)
|
||||
assert 'short' in shortdf.columns
|
||||
|
||||
exit_shortdf = strategy.advise_exit(result, metadata=metadata, is_short=True)
|
||||
assert isinstance(exit_shortdf, DataFrame)
|
||||
assert 'exit_short' in exit_shortdf
|
||||
|
Loading…
Reference in New Issue
Block a user