add more tests for datakitchen functionalities, add regression tests for freqai_interface train/backtest
This commit is contained in:
@@ -690,8 +690,6 @@ class FreqaiDataKitchen:
|
||||
Append backtest prediction from current backtest period to all previous periods
|
||||
"""
|
||||
|
||||
# ones = np.ones(len(predictions))
|
||||
# target_mean, target_std = ones * self.data["target_mean"], ones * self.data["target_std"]
|
||||
self.append_df = DataFrame()
|
||||
for label in self.label_list:
|
||||
self.append_df[label] = predictions[label]
|
||||
@@ -707,13 +705,6 @@ class FreqaiDataKitchen:
|
||||
else:
|
||||
self.full_df = pd.concat([self.full_df, self.append_df], axis=0)
|
||||
|
||||
# self.full_predictions = np.append(self.full_predictions, predictions)
|
||||
# self.full_do_predict = np.append(self.full_do_predict, do_predict)
|
||||
# if self.freqai_config.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
|
||||
# self.full_DI_values = np.append(self.full_DI_values, self.DI_values)
|
||||
# self.full_target_mean = np.append(self.full_target_mean, target_mean)
|
||||
# self.full_target_std = np.append(self.full_target_std, target_std)
|
||||
|
||||
return
|
||||
|
||||
def fill_predictions(self, dataframe):
|
||||
@@ -734,12 +725,6 @@ class FreqaiDataKitchen:
|
||||
|
||||
self.append_df = DataFrame()
|
||||
self.full_df = DataFrame()
|
||||
# self.full_predictions = np.append(filler, self.full_predictions)
|
||||
# self.full_do_predict = np.append(filler, self.full_do_predict)
|
||||
# if self.freqai_config.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
|
||||
# self.full_DI_values = np.append(filler, self.full_DI_values)
|
||||
# self.full_target_mean = np.append(filler, self.full_target_mean)
|
||||
# self.full_target_std = np.append(filler, self.full_target_std)
|
||||
|
||||
return
|
||||
|
||||
|
@@ -170,11 +170,10 @@ class IFreqaiModel(ABC):
|
||||
gc.collect()
|
||||
dk.data = {} # clean the pair specific data between training window sliding
|
||||
self.training_timerange = tr_train
|
||||
# self.training_timerange_timerange = tr_train
|
||||
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
|
||||
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
|
||||
|
||||
trained_timestamp = tr_train # TimeRange.parse_timerange(tr_train)
|
||||
trained_timestamp = tr_train
|
||||
tr_train_startts_str = datetime.datetime.utcfromtimestamp(tr_train.startts).strftime(
|
||||
"%Y-%m-%d %H:%M:%S"
|
||||
)
|
||||
|
Reference in New Issue
Block a user