Merge branch 'freqtrade:develop' into patch-1
This commit is contained in:
commit
d27d5624e0
@ -9,7 +9,7 @@ from collections import deque
|
|||||||
from datetime import datetime, timezone
|
from datetime import datetime, timezone
|
||||||
from typing import Any, Dict, List, Optional, Tuple
|
from typing import Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
from pandas import DataFrame, to_timedelta
|
from pandas import DataFrame, Timedelta, Timestamp, to_timedelta
|
||||||
|
|
||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
|
from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
|
||||||
@ -206,9 +206,11 @@ class DataProvider:
|
|||||||
existing_df, _ = self.__producer_pairs_df[producer_name][pair_key]
|
existing_df, _ = self.__producer_pairs_df[producer_name][pair_key]
|
||||||
|
|
||||||
# CHECK FOR MISSING CANDLES
|
# CHECK FOR MISSING CANDLES
|
||||||
timeframe_delta = to_timedelta(timeframe) # Convert the timeframe to a timedelta for pandas
|
# Convert the timeframe to a timedelta for pandas
|
||||||
local_last = existing_df.iloc[-1]['date'] # We want the last date from our copy
|
timeframe_delta: Timedelta = to_timedelta(timeframe)
|
||||||
incoming_first = dataframe.iloc[0]['date'] # We want the first date from the incoming
|
local_last: Timestamp = existing_df.iloc[-1]['date'] # We want the last date from our copy
|
||||||
|
# We want the first date from the incoming
|
||||||
|
incoming_first: Timestamp = dataframe.iloc[0]['date']
|
||||||
|
|
||||||
# Remove existing candles that are newer than the incoming first candle
|
# Remove existing candles that are newer than the incoming first candle
|
||||||
existing_df1 = existing_df[existing_df['date'] < incoming_first]
|
existing_df1 = existing_df[existing_df['date'] < incoming_first]
|
||||||
@ -221,7 +223,7 @@ class DataProvider:
|
|||||||
# we missed some candles between our data and the incoming
|
# we missed some candles between our data and the incoming
|
||||||
# so return False and candle_difference.
|
# so return False and candle_difference.
|
||||||
if candle_difference > 1:
|
if candle_difference > 1:
|
||||||
return (False, candle_difference)
|
return (False, int(candle_difference))
|
||||||
if existing_df1.empty:
|
if existing_df1.empty:
|
||||||
appended_df = dataframe
|
appended_df = dataframe
|
||||||
else:
|
else:
|
||||||
|
@ -308,7 +308,7 @@ class IDataHandler(ABC):
|
|||||||
timerange=timerange_startup,
|
timerange=timerange_startup,
|
||||||
candle_type=candle_type
|
candle_type=candle_type
|
||||||
)
|
)
|
||||||
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data, True):
|
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
|
||||||
return pairdf
|
return pairdf
|
||||||
else:
|
else:
|
||||||
enddate = pairdf.iloc[-1]['date']
|
enddate = pairdf.iloc[-1]['date']
|
||||||
@ -316,7 +316,7 @@ class IDataHandler(ABC):
|
|||||||
if timerange_startup:
|
if timerange_startup:
|
||||||
self._validate_pairdata(pair, pairdf, timeframe, candle_type, timerange_startup)
|
self._validate_pairdata(pair, pairdf, timeframe, candle_type, timerange_startup)
|
||||||
pairdf = trim_dataframe(pairdf, timerange_startup)
|
pairdf = trim_dataframe(pairdf, timerange_startup)
|
||||||
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
|
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data, True):
|
||||||
return pairdf
|
return pairdf
|
||||||
|
|
||||||
# incomplete candles should only be dropped if we didn't trim the end beforehand.
|
# incomplete candles should only be dropped if we didn't trim the end beforehand.
|
||||||
|
@ -44,7 +44,7 @@ class SharpeHyperOptLossDaily(IHyperOptLoss):
|
|||||||
|
|
||||||
sum_daily = (
|
sum_daily = (
|
||||||
results.resample(resample_freq, on='close_date').agg(
|
results.resample(resample_freq, on='close_date').agg(
|
||||||
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
|
{"profit_ratio_after_slippage": 'sum'}).reindex(t_index).fillna(0)
|
||||||
)
|
)
|
||||||
|
|
||||||
total_profit = sum_daily["profit_ratio_after_slippage"] - risk_free_rate
|
total_profit = sum_daily["profit_ratio_after_slippage"] - risk_free_rate
|
||||||
|
@ -46,7 +46,7 @@ class SortinoHyperOptLossDaily(IHyperOptLoss):
|
|||||||
|
|
||||||
sum_daily = (
|
sum_daily = (
|
||||||
results.resample(resample_freq, on='close_date').agg(
|
results.resample(resample_freq, on='close_date').agg(
|
||||||
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
|
{"profit_ratio_after_slippage": 'sum'}).reindex(t_index).fillna(0)
|
||||||
)
|
)
|
||||||
|
|
||||||
total_profit = sum_daily["profit_ratio_after_slippage"] - minimum_acceptable_return
|
total_profit = sum_daily["profit_ratio_after_slippage"] - minimum_acceptable_return
|
||||||
|
@ -90,7 +90,7 @@ async def _process_consumer_request(
|
|||||||
|
|
||||||
elif type == RPCRequestType.ANALYZED_DF:
|
elif type == RPCRequestType.ANALYZED_DF:
|
||||||
# Limit the amount of candles per dataframe to 'limit' or 1500
|
# Limit the amount of candles per dataframe to 'limit' or 1500
|
||||||
limit = min(data.get('limit', 1500), 1500) if data else None
|
limit = int(min(data.get('limit', 1500), 1500)) if data else None
|
||||||
pair = data.get('pair', None) if data else None
|
pair = data.get('pair', None) if data else None
|
||||||
|
|
||||||
# For every pair in the generator, send a separate message
|
# For every pair in the generator, send a separate message
|
||||||
|
@ -437,6 +437,7 @@ def test_dp__add_external_df(default_conf_usdt):
|
|||||||
# Add the same dataframe again - dataframe size shall not change.
|
# Add the same dataframe again - dataframe size shall not change.
|
||||||
res = dp._add_external_df('ETH/USDT', df, last_analyzed, timeframe, CandleType.SPOT)
|
res = dp._add_external_df('ETH/USDT', df, last_analyzed, timeframe, CandleType.SPOT)
|
||||||
assert res[0] is True
|
assert res[0] is True
|
||||||
|
assert isinstance(res[1], int)
|
||||||
assert res[1] == 0
|
assert res[1] == 0
|
||||||
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
||||||
assert len(df) == 24
|
assert len(df) == 24
|
||||||
@ -446,6 +447,7 @@ def test_dp__add_external_df(default_conf_usdt):
|
|||||||
|
|
||||||
res = dp._add_external_df('ETH/USDT', df2, last_analyzed, timeframe, CandleType.SPOT)
|
res = dp._add_external_df('ETH/USDT', df2, last_analyzed, timeframe, CandleType.SPOT)
|
||||||
assert res[0] is True
|
assert res[0] is True
|
||||||
|
assert isinstance(res[1], int)
|
||||||
assert res[1] == 0
|
assert res[1] == 0
|
||||||
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
||||||
assert len(df) == 48
|
assert len(df) == 48
|
||||||
@ -455,6 +457,7 @@ def test_dp__add_external_df(default_conf_usdt):
|
|||||||
|
|
||||||
res = dp._add_external_df('ETH/USDT', df3, last_analyzed, timeframe, CandleType.SPOT)
|
res = dp._add_external_df('ETH/USDT', df3, last_analyzed, timeframe, CandleType.SPOT)
|
||||||
assert res[0] is True
|
assert res[0] is True
|
||||||
|
assert isinstance(res[1], int)
|
||||||
assert res[1] == 0
|
assert res[1] == 0
|
||||||
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
||||||
# New length = 48 + 12 (since we have a 12 hour offset).
|
# New length = 48 + 12 (since we have a 12 hour offset).
|
||||||
@ -478,6 +481,7 @@ def test_dp__add_external_df(default_conf_usdt):
|
|||||||
res = dp._add_external_df('ETH/USDT', df4, last_analyzed, timeframe, CandleType.SPOT)
|
res = dp._add_external_df('ETH/USDT', df4, last_analyzed, timeframe, CandleType.SPOT)
|
||||||
assert res[0] is False
|
assert res[0] is False
|
||||||
# 36 hours - from 2022-01-03 12:00:00+00:00 to 2022-01-05 00:00:00+00:00
|
# 36 hours - from 2022-01-03 12:00:00+00:00 to 2022-01-05 00:00:00+00:00
|
||||||
|
assert isinstance(res[1], int)
|
||||||
assert res[1] == 36
|
assert res[1] == 36
|
||||||
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
||||||
# New length = 61 + 1
|
# New length = 61 + 1
|
||||||
@ -488,4 +492,5 @@ def test_dp__add_external_df(default_conf_usdt):
|
|||||||
res = dp._add_external_df('ETH/USDT', df4, last_analyzed, timeframe, CandleType.SPOT)
|
res = dp._add_external_df('ETH/USDT', df4, last_analyzed, timeframe, CandleType.SPOT)
|
||||||
assert res[0] is False
|
assert res[0] is False
|
||||||
# 36 hours - from 2022-01-03 12:00:00+00:00 to 2022-01-05 00:00:00+00:00
|
# 36 hours - from 2022-01-03 12:00:00+00:00 to 2022-01-05 00:00:00+00:00
|
||||||
|
assert isinstance(res[1], int)
|
||||||
assert res[1] == 0
|
assert res[1] == 0
|
||||||
|
Loading…
Reference in New Issue
Block a user