auto populate features based on a prepended % in the strategy (remove feature assignment from config). Update doc/constants/example strategy to reflect change
This commit is contained in:
@@ -62,8 +62,11 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
def populate_any_indicators(self, pair, df, tf, informative=None, coin=""):
|
||||
"""
|
||||
Function designed to automatically generate, name and merge features
|
||||
from user indicated timeframes in the configuration file. User can add
|
||||
additional features here, but must follow the naming convention.
|
||||
from user indicated timeframes in the configuration file. User controls the indicators
|
||||
passed to the training/prediction by prepending indicators with `'%-' + coin `
|
||||
(see convention below). I.e. user should not prepend any supporting metrics
|
||||
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
||||
model.
|
||||
:params:
|
||||
:pair: pair to be used as informative
|
||||
:df: strategy dataframe which will receive merges from informatives
|
||||
@@ -74,49 +77,50 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
if informative is None:
|
||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||
|
||||
informative[coin + "rsi"] = ta.RSI(informative, timeperiod=14)
|
||||
informative[coin + "mfi"] = ta.MFI(informative, timeperiod=25)
|
||||
informative[coin + "adx"] = ta.ADX(informative, window=20)
|
||||
informative['%-' + coin + "rsi"] = ta.RSI(informative, timeperiod=14)
|
||||
informative['%-' + coin + "mfi"] = ta.MFI(informative, timeperiod=25)
|
||||
informative['%-' + coin + "adx"] = ta.ADX(informative, window=20)
|
||||
|
||||
informative[coin + "20sma"] = ta.SMA(informative, timeperiod=20)
|
||||
informative[coin + "21ema"] = ta.EMA(informative, timeperiod=21)
|
||||
informative[coin + "bmsb"] = np.where(
|
||||
informative['%-' + coin + "bmsb"] = np.where(
|
||||
informative[coin + "20sma"].lt(informative[coin + "21ema"]), 1, 0
|
||||
)
|
||||
informative[coin + "close_over_20sma"] = informative["close"] / informative[coin + "20sma"]
|
||||
informative['%-' + coin + "close_over_20sma"] = informative["close"] / informative[
|
||||
coin + "20sma"]
|
||||
|
||||
informative[coin + "mfi"] = ta.MFI(informative, timeperiod=25)
|
||||
informative['%-' + coin + "mfi"] = ta.MFI(informative, timeperiod=25)
|
||||
|
||||
informative[coin + "ema21"] = ta.EMA(informative, timeperiod=21)
|
||||
informative[coin + "sma20"] = ta.SMA(informative, timeperiod=20)
|
||||
stoch = ta.STOCHRSI(informative, 15, 20, 2, 2)
|
||||
informative[coin + "srsi-fk"] = stoch["fastk"]
|
||||
informative[coin + "srsi-fd"] = stoch["fastd"]
|
||||
informative['%-' + coin + "srsi-fk"] = stoch["fastk"]
|
||||
informative['%-' + coin + "srsi-fd"] = stoch["fastd"]
|
||||
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(informative), window=14, stds=2.2)
|
||||
informative[coin + "bb_lowerband"] = bollinger["lower"]
|
||||
informative[coin + "bb_middleband"] = bollinger["mid"]
|
||||
informative[coin + "bb_upperband"] = bollinger["upper"]
|
||||
informative[coin + "bb_width"] = (
|
||||
informative['%-' + coin + "bb_width"] = (
|
||||
informative[coin + "bb_upperband"] - informative[coin + "bb_lowerband"]
|
||||
) / informative[coin + "bb_middleband"]
|
||||
informative[coin + "close-bb_lower"] = (
|
||||
informative['%-' + coin + "close-bb_lower"] = (
|
||||
informative["close"] / informative[coin + "bb_lowerband"]
|
||||
)
|
||||
|
||||
informative[coin + "roc"] = ta.ROC(informative, timeperiod=3)
|
||||
informative[coin + "adx"] = ta.ADX(informative, window=14)
|
||||
informative['%-' + coin + "roc"] = ta.ROC(informative, timeperiod=3)
|
||||
informative['%-' + coin + "adx"] = ta.ADX(informative, window=14)
|
||||
|
||||
macd = ta.MACD(informative)
|
||||
informative[coin + "macd"] = macd["macd"]
|
||||
informative['%-' + coin + "macd"] = macd["macd"]
|
||||
informative[coin + "pct-change"] = informative["close"].pct_change()
|
||||
informative[coin + "relative_volume"] = (
|
||||
informative['%-' + coin + "relative_volume"] = (
|
||||
informative["volume"] / informative["volume"].rolling(10).mean()
|
||||
)
|
||||
|
||||
informative[coin + "pct-change"] = informative["close"].pct_change()
|
||||
|
||||
indicators = [col for col in informative if col.startswith(coin)]
|
||||
indicators = [col for col in informative if col.startswith('%')]
|
||||
|
||||
for n in range(self.freqai_info["feature_parameters"]["shift"] + 1):
|
||||
if n == 0:
|
||||
@@ -154,7 +158,6 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
pair, dataframe.copy(), tf, coin=pair.split("/")[0] + "-"
|
||||
)
|
||||
|
||||
print('dataframe_built')
|
||||
# the model will return 4 values, its prediction, an indication of whether or not the
|
||||
# prediction should be accepted, the target mean/std values from the labels used during
|
||||
# each training period.
|
||||
@@ -181,7 +184,6 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# sell_goal = eval('self.'+metadata['pair'].split("/")[0]+'_sell_goal.value')
|
||||
sell_conditions = [
|
||||
(dataframe["prediction"] < dataframe["sell_roi"]) & (dataframe["do_predict"] == 1)
|
||||
]
|
||||
|
Reference in New Issue
Block a user