auto populate features based on a prepended % in the strategy (remove feature assignment from config). Update doc/constants/example strategy to reflect change
This commit is contained in:
@@ -53,9 +53,8 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
logger.info("--------------------Starting training--------------------")
|
||||
|
||||
# create the full feature list based on user config info
|
||||
self.dh.training_features_list = self.dh.build_feature_list(self.config, metadata)
|
||||
self.dh.training_features_list = self.dh.find_features(unfiltered_dataframe)
|
||||
unfiltered_labels = self.make_labels(unfiltered_dataframe)
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = self.dh.filter_features(
|
||||
unfiltered_dataframe,
|
||||
@@ -127,7 +126,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
|
||||
# logger.info("--------------------Starting prediction--------------------")
|
||||
|
||||
original_feature_list = self.dh.build_feature_list(self.config, metadata)
|
||||
original_feature_list = self.dh.find_features(unfiltered_dataframe)
|
||||
filtered_dataframe, _ = self.dh.filter_features(
|
||||
unfiltered_dataframe, original_feature_list, training_filter=False
|
||||
)
|
||||
|
Reference in New Issue
Block a user