improve default reward, fix bugs in environment

This commit is contained in:
robcaulk
2022-08-24 18:32:40 +02:00
parent a61821e1c6
commit d1bee29b1e
3 changed files with 102 additions and 53 deletions

View File

@@ -19,7 +19,6 @@ from typing import Callable
from datetime import datetime, timezone
from stable_baselines3.common.utils import set_random_seed
import gym
from pathlib import Path
logger = logging.getLogger(__name__)
torch.multiprocessing.set_sharing_strategy('file_system')
@@ -112,27 +111,14 @@ class BaseReinforcementLearningModel(IFreqaiModel):
test_df = data_dictionary["test_features"]
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
# environments
if not self.train_env:
self.train_env = MyRLEnv(df=train_df, prices=prices_train, window_size=self.CONV_WIDTH,
reward_kwargs=self.reward_params, config=self.config)
self.eval_env = Monitor(MyRLEnv(df=test_df, prices=prices_test,
window_size=self.CONV_WIDTH,
reward_kwargs=self.reward_params, config=self.config))
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=eval_freq,
best_model_save_path=str(dk.data_path))
else:
self.train_env.reset()
self.eval_env.reset()
self.train_env.reset_env(train_df, prices_train, self.CONV_WIDTH, self.reward_params)
self.eval_env.reset_env(test_df, prices_test, self.CONV_WIDTH, self.reward_params)
# self.eval_callback.eval_env = self.eval_env
# self.eval_callback.best_model_save_path = str(dk.data_path)
# self.eval_callback._init_callback()
self.eval_callback.__init__(self.eval_env, deterministic=True,
render=False, eval_freq=eval_freq,
best_model_save_path=str(dk.data_path))
self.train_env = MyRLEnv(df=train_df, prices=prices_train, window_size=self.CONV_WIDTH,
reward_kwargs=self.reward_params, config=self.config)
self.eval_env = Monitor(MyRLEnv(df=test_df, prices=prices_test,
window_size=self.CONV_WIDTH,
reward_kwargs=self.reward_params, config=self.config))
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=eval_freq,
best_model_save_path=str(dk.data_path))
@abstractmethod
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
@@ -284,30 +270,43 @@ class MyRLEnv(Base5ActionRLEnv):
def calculate_reward(self, action):
if self._last_trade_tick is None:
return 0.
# first, penalize if the action is not valid
if not self._is_valid(action):
return -15
pnl = self.get_unrealized_profit()
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 100)
rew = np.sign(pnl) * (pnl + 1)
factor = 100
# reward agent for entering trades
if action in (Actions.Long_enter.value, Actions.Short_enter.value):
return 25
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -15
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
trade_duration = self._current_tick - self._last_trade_tick
factor = 1
if trade_duration <= max_trade_duration:
factor *= 1.5
elif trade_duration > max_trade_duration:
factor *= 0.5
# discourage sitting in position
if self._position in (Positions.Short, Positions.Long):
return -50 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if self.close_trade_profit and self.close_trade_profit[-1] > self.profit_aim * self.rr:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
return float(rew * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
factor = 1
if self.close_trade_profit and self.close_trade_profit[-1] > self.profit_aim * self.rr:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
return float(rew * factor)
return 0.