Merge pull request #515 from gcarq/indicator_helpers
Random indicator helpers
This commit is contained in:
commit
d13d6736b9
40
freqtrade/indicator_helpers.py
Normal file
40
freqtrade/indicator_helpers.py
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
from math import exp, pi, sqrt, cos
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
import talib as ta
|
||||||
|
from pandas import Series
|
||||||
|
|
||||||
|
|
||||||
|
def went_up(series: Series) -> Series:
|
||||||
|
return series > series.shift(1)
|
||||||
|
|
||||||
|
|
||||||
|
def went_down(series: Series) -> Series:
|
||||||
|
return series < series.shift(1)
|
||||||
|
|
||||||
|
|
||||||
|
def ehlers_super_smoother(series: Series, smoothing: float = 6):
|
||||||
|
magic = pi * sqrt(2) / smoothing
|
||||||
|
a1 = exp(-magic)
|
||||||
|
coeff2 = 2 * a1 * cos(magic)
|
||||||
|
coeff3 = -a1 * a1
|
||||||
|
coeff1 = (1 - coeff2 - coeff3) / 2
|
||||||
|
|
||||||
|
filtered = series.copy()
|
||||||
|
|
||||||
|
for i in range(2, len(series)):
|
||||||
|
filtered.iloc[i] = coeff1 * (series.iloc[i] + series.iloc[i-1]) + \
|
||||||
|
coeff2 * filtered.iloc[i-1] + coeff3 * filtered.iloc[i-2]
|
||||||
|
|
||||||
|
return filtered
|
||||||
|
|
||||||
|
|
||||||
|
def fishers_inverse(series: Series, smoothing: float = 0):
|
||||||
|
""" Does a smoothed fishers inverse transformation.
|
||||||
|
Can be used with any oscillator that goes from 0 to 100 like RSI or MFI """
|
||||||
|
v1 = 0.1 * (series - 50)
|
||||||
|
if smoothing > 0:
|
||||||
|
v2 = ta.WMA(v1.values, timeperiod=smoothing)
|
||||||
|
else:
|
||||||
|
v2 = v1
|
||||||
|
return (numpy.exp(2 * v2)-1) / (numpy.exp(2 * v2) + 1)
|
@ -4,7 +4,7 @@ import talib.abstract as ta
|
|||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
from freqtrade.strategy.interface import IStrategy
|
from freqtrade.strategy.interface import IStrategy
|
||||||
|
from freqtrade.indicator_helpers import fishers_inverse
|
||||||
|
|
||||||
class_name = 'DefaultStrategy'
|
class_name = 'DefaultStrategy'
|
||||||
|
|
||||||
@ -74,17 +74,18 @@ class DefaultStrategy(IStrategy):
|
|||||||
"""
|
"""
|
||||||
# RSI
|
# RSI
|
||||||
dataframe['rsi'] = ta.RSI(dataframe)
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||||||
"""
|
|
||||||
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||||
rsi = 0.1 * (dataframe['rsi'] - 50)
|
dataframe['fisher_rsi'] = fishers_inverse(dataframe['rsi'])
|
||||||
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
|
||||||
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||||||
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||||||
|
|
||||||
# Stoch
|
# Stoch
|
||||||
stoch = ta.STOCH(dataframe)
|
stoch = ta.STOCH(dataframe)
|
||||||
dataframe['slowd'] = stoch['slowd']
|
dataframe['slowd'] = stoch['slowd']
|
||||||
dataframe['slowk'] = stoch['slowk']
|
dataframe['slowk'] = stoch['slowk']
|
||||||
"""
|
|
||||||
# Stoch fast
|
# Stoch fast
|
||||||
stoch_fast = ta.STOCHF(dataframe)
|
stoch_fast = ta.STOCHF(dataframe)
|
||||||
dataframe['fastd'] = stoch_fast['fastd']
|
dataframe['fastd'] = stoch_fast['fastd']
|
||||||
|
12
freqtrade/tests/test_indicator_helpers.py
Normal file
12
freqtrade/tests/test_indicator_helpers.py
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from freqtrade.indicator_helpers import went_up, went_down
|
||||||
|
|
||||||
|
|
||||||
|
def test_went_up():
|
||||||
|
series = pd.Series([1, 2, 3, 1])
|
||||||
|
assert went_up(series).equals(pd.Series([False, True, True, False]))
|
||||||
|
|
||||||
|
|
||||||
|
def test_went_down():
|
||||||
|
series = pd.Series([1, 2, 3, 1])
|
||||||
|
assert went_down(series).equals(pd.Series([False, False, False, True]))
|
Loading…
Reference in New Issue
Block a user