freqtrades' merge broke my side, fixed it by porting it over to my develop branch, no changes with this commit logic-wise.
This commit is contained in:
parent
ce3efa8f00
commit
d12a7ff18b
@ -22,6 +22,7 @@ from freqtrade.commands.optimize_commands import (start_backtesting, start_backt
|
|||||||
start_edge, start_hyperopt)
|
start_edge, start_hyperopt)
|
||||||
from freqtrade.commands.pairlist_commands import start_test_pairlist
|
from freqtrade.commands.pairlist_commands import start_test_pairlist
|
||||||
from freqtrade.commands.plot_commands import start_plot_dataframe, start_plot_profit
|
from freqtrade.commands.plot_commands import start_plot_dataframe, start_plot_profit
|
||||||
from freqtrade.commands.strategy_utils_commands import start_strategy_update
|
from freqtrade.commands.strategy_utils_commands import (start_backtest_lookahead_bias_checker,
|
||||||
|
start_strategy_update)
|
||||||
from freqtrade.commands.trade_commands import start_trading
|
from freqtrade.commands.trade_commands import start_trading
|
||||||
from freqtrade.commands.webserver_commands import start_webserver
|
from freqtrade.commands.webserver_commands import start_webserver
|
||||||
|
@ -116,8 +116,14 @@ NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list
|
|||||||
|
|
||||||
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
|
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
|
||||||
|
|
||||||
ARGS_STRATEGY_UTILS = ["strategy_list", "strategy_path", "recursive_strategy_search"]
|
ARGS_STRATEGY_UPDATER = ARGS_COMMON_OPTIMIZE + ["strategy_list"]
|
||||||
|
|
||||||
|
ARGS_BACKTEST_LOOKAHEAD_BIAS_CHECKER = ARGS_BACKTEST
|
||||||
|
|
||||||
|
|
||||||
|
# + ["target_trades", "minimum_trades",
|
||||||
|
# "target_trades", "exportfilename"]
|
||||||
|
# will be added when the base version works.
|
||||||
|
|
||||||
class Arguments:
|
class Arguments:
|
||||||
"""
|
"""
|
||||||
@ -192,7 +198,8 @@ class Arguments:
|
|||||||
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
|
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
|
||||||
self._build_args(optionlist=['version'], parser=self.parser)
|
self._build_args(optionlist=['version'], parser=self.parser)
|
||||||
|
|
||||||
from freqtrade.commands import (start_analysis_entries_exits, start_backtesting,
|
from freqtrade.commands import (start_analysis_entries_exits,
|
||||||
|
start_backtest_lookahead_bias_checker, start_backtesting,
|
||||||
start_backtesting_show, start_convert_data,
|
start_backtesting_show, start_convert_data,
|
||||||
start_convert_db, start_convert_trades,
|
start_convert_db, start_convert_trades,
|
||||||
start_create_userdir, start_download_data, start_edge,
|
start_create_userdir, start_download_data, start_edge,
|
||||||
@ -450,4 +457,14 @@ class Arguments:
|
|||||||
'files to the current version',
|
'files to the current version',
|
||||||
parents=[_common_parser])
|
parents=[_common_parser])
|
||||||
strategy_updater_cmd.set_defaults(func=start_strategy_update)
|
strategy_updater_cmd.set_defaults(func=start_strategy_update)
|
||||||
self._build_args(optionlist=ARGS_STRATEGY_UTILS, parser=strategy_updater_cmd)
|
self._build_args(optionlist=ARGS_STRATEGY_UPDATER, parser=strategy_updater_cmd)
|
||||||
|
|
||||||
|
# Add backtest lookahead bias checker subcommand
|
||||||
|
backtest_lookahead_bias_checker_cmd = \
|
||||||
|
subparsers.add_parser('backtest_lookahead_bias_checker',
|
||||||
|
help="checks for potential look ahead bias",
|
||||||
|
parents=[_common_parser])
|
||||||
|
backtest_lookahead_bias_checker_cmd.set_defaults(func=start_backtest_lookahead_bias_checker)
|
||||||
|
|
||||||
|
self._build_args(optionlist=ARGS_BACKTEST_LOOKAHEAD_BIAS_CHECKER,
|
||||||
|
parser=backtest_lookahead_bias_checker_cmd)
|
||||||
|
@ -7,6 +7,7 @@ from typing import Any, Dict
|
|||||||
from freqtrade.configuration import setup_utils_configuration
|
from freqtrade.configuration import setup_utils_configuration
|
||||||
from freqtrade.enums import RunMode
|
from freqtrade.enums import RunMode
|
||||||
from freqtrade.resolvers import StrategyResolver
|
from freqtrade.resolvers import StrategyResolver
|
||||||
|
from freqtrade.strategy.backtest_lookahead_bias_checker import backtest_lookahead_bias_checker
|
||||||
from freqtrade.strategy.strategyupdater import StrategyUpdater
|
from freqtrade.strategy.strategyupdater import StrategyUpdater
|
||||||
|
|
||||||
|
|
||||||
@ -53,3 +54,47 @@ def start_conversion(strategy_obj, config):
|
|||||||
instance_strategy_updater.start(config, strategy_obj)
|
instance_strategy_updater.start(config, strategy_obj)
|
||||||
elapsed = time.perf_counter() - start
|
elapsed = time.perf_counter() - start
|
||||||
print(f"Conversion of {Path(strategy_obj['location']).name} took {elapsed:.1f} seconds.")
|
print(f"Conversion of {Path(strategy_obj['location']).name} took {elapsed:.1f} seconds.")
|
||||||
|
|
||||||
|
# except:
|
||||||
|
# pass
|
||||||
|
|
||||||
|
|
||||||
|
def start_backtest_lookahead_bias_checker(args: Dict[str, Any]) -> None:
|
||||||
|
"""
|
||||||
|
Start the backtest bias tester script
|
||||||
|
:param args: Cli args from Arguments()
|
||||||
|
:return: None
|
||||||
|
"""
|
||||||
|
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||||
|
|
||||||
|
strategy_objs = StrategyResolver.search_all_objects(
|
||||||
|
config, enum_failed=False, recursive=config.get('recursive_strategy_search', False))
|
||||||
|
|
||||||
|
filtered_strategy_objs = []
|
||||||
|
if 'strategy_list' in args and args['strategy_list'] is not None:
|
||||||
|
for args_strategy in args['strategy_list']:
|
||||||
|
for strategy_obj in strategy_objs:
|
||||||
|
if (strategy_obj['name'] == args_strategy
|
||||||
|
and strategy_obj not in filtered_strategy_objs):
|
||||||
|
filtered_strategy_objs.append(strategy_obj)
|
||||||
|
break
|
||||||
|
|
||||||
|
for filtered_strategy_obj in filtered_strategy_objs:
|
||||||
|
initialize_single_lookahead_bias_checker(filtered_strategy_obj, config)
|
||||||
|
else:
|
||||||
|
processed_locations = set()
|
||||||
|
for strategy_obj in strategy_objs:
|
||||||
|
if strategy_obj['location'] not in processed_locations:
|
||||||
|
processed_locations.add(strategy_obj['location'])
|
||||||
|
initialize_single_lookahead_bias_checker(strategy_obj, config)
|
||||||
|
|
||||||
|
|
||||||
|
def initialize_single_lookahead_bias_checker(strategy_obj, config):
|
||||||
|
# try:
|
||||||
|
print(f"Bias test of {Path(strategy_obj['location']).name} started.")
|
||||||
|
instance_backtest_lookahead_bias_checker = backtest_lookahead_bias_checker()
|
||||||
|
start = time.perf_counter()
|
||||||
|
instance_backtest_lookahead_bias_checker.start(config, strategy_obj)
|
||||||
|
elapsed = time.perf_counter() - start
|
||||||
|
print(f"checking look ahead bias via backtests of {Path(strategy_obj['location']).name} "
|
||||||
|
f"took {elapsed:.1f} seconds.")
|
||||||
|
241
freqtrade/strategy/backtest_lookahead_bias_checker.py
Normal file
241
freqtrade/strategy/backtest_lookahead_bias_checker.py
Normal file
@ -0,0 +1,241 @@
|
|||||||
|
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
||||||
|
from copy import deepcopy
|
||||||
|
from datetime import datetime, timedelta, timezone
|
||||||
|
|
||||||
|
import pandas
|
||||||
|
|
||||||
|
from freqtrade.configuration import TimeRange
|
||||||
|
from freqtrade.data.history import get_timerange
|
||||||
|
from freqtrade.exchange import timeframe_to_minutes
|
||||||
|
from freqtrade.optimize.backtesting import Backtesting
|
||||||
|
|
||||||
|
|
||||||
|
class backtest_lookahead_bias_checker:
|
||||||
|
class varHolder:
|
||||||
|
timerange: TimeRange
|
||||||
|
data: pandas.DataFrame
|
||||||
|
indicators: pandas.DataFrame
|
||||||
|
result: pandas.DataFrame
|
||||||
|
compared: pandas.DataFrame
|
||||||
|
from_dt: datetime
|
||||||
|
to_dt: datetime
|
||||||
|
compared_dt: datetime
|
||||||
|
|
||||||
|
class analysis:
|
||||||
|
def __init__(self):
|
||||||
|
self.total_signals = 0
|
||||||
|
self.false_entry_signals = 0
|
||||||
|
self.false_exit_signals = 0
|
||||||
|
self.false_indicators = []
|
||||||
|
self.has_bias = False
|
||||||
|
|
||||||
|
total_signals: int
|
||||||
|
false_entry_signals: int
|
||||||
|
false_exit_signals: int
|
||||||
|
|
||||||
|
false_indicators: list
|
||||||
|
has_bias: bool
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.strategy_obj
|
||||||
|
self.current_analysis
|
||||||
|
self.config
|
||||||
|
self.full_varHolder
|
||||||
|
self.entry_varholder
|
||||||
|
self.exit_varholder
|
||||||
|
self.backtesting
|
||||||
|
self.signals_to_check: int = 20
|
||||||
|
self.current_analysis
|
||||||
|
self.full_varHolder.from_dt
|
||||||
|
self.full_varHolder.to_dt
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def dt_to_timestamp(dt):
|
||||||
|
timestamp = int(dt.replace(tzinfo=timezone.utc).timestamp())
|
||||||
|
return timestamp
|
||||||
|
|
||||||
|
def get_result(self, backtesting, processed):
|
||||||
|
min_date, max_date = get_timerange(processed)
|
||||||
|
|
||||||
|
result = backtesting.backtest(
|
||||||
|
processed=deepcopy(processed),
|
||||||
|
start_date=min_date,
|
||||||
|
end_date=max_date
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
# analyzes two data frames with processed indicators and shows differences between them.
|
||||||
|
def analyze_indicators(self, full_vars, cut_vars, current_pair):
|
||||||
|
# extract dataframes
|
||||||
|
cut_df = cut_vars.indicators[current_pair]
|
||||||
|
full_df = full_vars.indicators[current_pair]
|
||||||
|
|
||||||
|
# cut longer dataframe to length of the shorter
|
||||||
|
full_df_cut = full_df[
|
||||||
|
(full_df.date == cut_vars.compared_dt)
|
||||||
|
].reset_index(drop=True)
|
||||||
|
cut_df_cut = cut_df[
|
||||||
|
(cut_df.date == cut_vars.compared_dt)
|
||||||
|
].reset_index(drop=True)
|
||||||
|
|
||||||
|
# compare dataframes
|
||||||
|
if full_df_cut.shape[0] != 0:
|
||||||
|
if cut_df_cut.shape[0] != 0:
|
||||||
|
compare_df = full_df_cut.compare(cut_df_cut)
|
||||||
|
|
||||||
|
# skippedColumns = ["date", "open", "high", "low", "close", "volume"]
|
||||||
|
for col_name, values in compare_df.items():
|
||||||
|
col_idx = compare_df.columns.get_loc(col_name)
|
||||||
|
compare_df_row = compare_df.iloc[0]
|
||||||
|
# compare_df now is comprised of tuples with [1] having either 'self' or 'other'
|
||||||
|
if 'other' in col_name[1]:
|
||||||
|
continue
|
||||||
|
self_value = compare_df_row[col_idx]
|
||||||
|
other_value = compare_df_row[col_idx + 1]
|
||||||
|
other_value = compare_df_row[col_idx + 1]
|
||||||
|
|
||||||
|
# output differences
|
||||||
|
if self_value != other_value:
|
||||||
|
|
||||||
|
if not self.current_analysis.false_indicators.__contains__(col_name[0]):
|
||||||
|
self.current_analysis.false_indicators.append(col_name[0])
|
||||||
|
print(f"=> found look ahead bias in indicator {col_name[0]}. " +
|
||||||
|
f"{str(self_value)} != {str(other_value)}")
|
||||||
|
# return compare_df
|
||||||
|
|
||||||
|
def report_signal(self, result, column_name, checked_timestamp):
|
||||||
|
df = result['results']
|
||||||
|
row_count = df[column_name].shape[0]
|
||||||
|
|
||||||
|
if row_count == 0:
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
|
||||||
|
df_cut = df[(df[column_name] == checked_timestamp)]
|
||||||
|
if df_cut[column_name].shape[0] == 0:
|
||||||
|
# print("did NOT find the same signal in column " + column_name +
|
||||||
|
# " at timestamp " + str(checked_timestamp))
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
def prepare_data(self, varholder, var_pairs):
|
||||||
|
self.config['timerange'] = \
|
||||||
|
str(int(self.dt_to_timestamp(varholder.from_dt))) + "-" + \
|
||||||
|
str(int(self.dt_to_timestamp(varholder.to_dt)))
|
||||||
|
self.backtesting = Backtesting(self.config)
|
||||||
|
self.backtesting._set_strategy(self.backtesting.strategylist[0])
|
||||||
|
varholder.data, varholder.timerange = self.backtesting.load_bt_data()
|
||||||
|
varholder.indicators = self.backtesting.strategy.advise_all_indicators(varholder.data)
|
||||||
|
varholder.result = self.get_result(self.backtesting, varholder.indicators)
|
||||||
|
|
||||||
|
def start(self, config, strategy_obj: dict) -> None:
|
||||||
|
self.strategy_obj = strategy_obj
|
||||||
|
self.config = config
|
||||||
|
self.current_analysis = backtest_lookahead_bias_checker.analysis()
|
||||||
|
|
||||||
|
max_try_signals: int = 3
|
||||||
|
found_signals: int = 0
|
||||||
|
continue_with_strategy = True
|
||||||
|
|
||||||
|
# first we need to get the necessary entry/exit signals
|
||||||
|
# so we start by 14 days and increase in 1 month steps
|
||||||
|
# until we have the desired trade amount.
|
||||||
|
for try_buysignals in range(max_try_signals): # range(3) = 0..2
|
||||||
|
# re-initialize backtesting-variable
|
||||||
|
self.full_varHolder = backtest_lookahead_bias_checker.varHolder()
|
||||||
|
|
||||||
|
# define datetimes in human readable format
|
||||||
|
self.full_varHolder.from_dt = datetime(2022, 9, 1)
|
||||||
|
self.full_varHolder.to_dt = datetime(2022, 9, 15) + timedelta(days=30 * try_buysignals)
|
||||||
|
|
||||||
|
self.prepare_data(self.full_varHolder, self.config['pairs'])
|
||||||
|
|
||||||
|
found_signals = self.full_varHolder.result['results'].shape[0] + 1
|
||||||
|
if try_buysignals == max_try_signals - 1:
|
||||||
|
if found_signals < self.signals_to_check / 2:
|
||||||
|
print(f"... only found {str(int(found_signals / 2))} "
|
||||||
|
f"buy signals for {self.strategy_obj['name']}. "
|
||||||
|
f"Cancelling...")
|
||||||
|
continue_with_strategy = False
|
||||||
|
else:
|
||||||
|
print(
|
||||||
|
f"Found {str(found_signals)} buy signals. "
|
||||||
|
f"Going with max {str(self.signals_to_check)} "
|
||||||
|
f" buy signals in the full timerange from "
|
||||||
|
f"{str(self.full_varHolder.from_dt)} to {str(self.full_varHolder.to_dt)}")
|
||||||
|
break
|
||||||
|
elif found_signals < self.signals_to_check:
|
||||||
|
print(
|
||||||
|
f"Only found {str(found_signals)} buy signals in the full timerange from "
|
||||||
|
f"{str(self.full_varHolder.from_dt)} to "
|
||||||
|
f"{str(self.full_varHolder.to_dt)}. "
|
||||||
|
f"will increase timerange trying to get at least "
|
||||||
|
f"{str(self.signals_to_check)} signals.")
|
||||||
|
else:
|
||||||
|
print(
|
||||||
|
f"Found {str(found_signals)} buy signals, more than necessary. "
|
||||||
|
f"Reducing to {str(self.signals_to_check)} "
|
||||||
|
f"checked buy signals in the full timerange from "
|
||||||
|
f"{str(self.full_varHolder.from_dt)} to {str(self.full_varHolder.to_dt)}")
|
||||||
|
break
|
||||||
|
if not continue_with_strategy:
|
||||||
|
return
|
||||||
|
|
||||||
|
for idx, result_row in self.full_varHolder.result['results'].iterrows():
|
||||||
|
if self.current_analysis.total_signals == self.signals_to_check:
|
||||||
|
break
|
||||||
|
|
||||||
|
# if force-sold, ignore this signal since here it will unconditionally exit.
|
||||||
|
if result_row.close_date == self.dt_to_timestamp(self.full_varHolder.to_dt):
|
||||||
|
continue
|
||||||
|
|
||||||
|
self.current_analysis.total_signals += 1
|
||||||
|
|
||||||
|
self.entry_varholder = backtest_lookahead_bias_checker.varHolder()
|
||||||
|
self.exit_varholder = backtest_lookahead_bias_checker.varHolder()
|
||||||
|
|
||||||
|
self.entry_varholder.from_dt = self.full_varHolder.from_dt # result_row['open_date']
|
||||||
|
self.entry_varholder.compared_dt = result_row['open_date']
|
||||||
|
|
||||||
|
# to_dt needs +1 candle since it won't buy on the last candle
|
||||||
|
self.entry_varholder.to_dt = result_row['open_date'] + \
|
||||||
|
timedelta(minutes=timeframe_to_minutes(self.config['timeframe']) * 2)
|
||||||
|
|
||||||
|
self.prepare_data(self.entry_varholder, [result_row['pair']])
|
||||||
|
|
||||||
|
# ---
|
||||||
|
# print("analyzing the sell signal")
|
||||||
|
# to_dt needs +1 candle since it will always sell all trades on the last candle
|
||||||
|
self.exit_varholder.from_dt = self.full_varHolder.from_dt # result_row['open_date']
|
||||||
|
self.exit_varholder.to_dt = \
|
||||||
|
result_row['close_date'] + \
|
||||||
|
timedelta(minutes=timeframe_to_minutes(self.config['timeframe']))
|
||||||
|
self.exit_varholder.compared_dt = result_row['close_date']
|
||||||
|
|
||||||
|
self.prepare_data(self.exit_varholder, [result_row['pair']])
|
||||||
|
|
||||||
|
# register if buy signal is broken
|
||||||
|
if not self.report_signal(
|
||||||
|
self.entry_varholder.result,
|
||||||
|
"open_date", self.entry_varholder.compared_dt):
|
||||||
|
self.current_analysis.false_entry_signals += 1
|
||||||
|
|
||||||
|
# register if buy or sell signal is broken
|
||||||
|
if not self.report_signal(self.entry_varholder.result,
|
||||||
|
"open_date", self.entry_varholder.compared_dt) \
|
||||||
|
or not self.report_signal(self.exit_varholder.result,
|
||||||
|
"close_date", self.exit_varholder.compared_dt):
|
||||||
|
self.current_analysis.false_exit_signals += 1
|
||||||
|
|
||||||
|
self.analyze_indicators(self.full_varHolder, self.entry_varholder, result_row['pair'])
|
||||||
|
self.analyze_indicators(self.full_varHolder, self.exit_varholder, result_row['pair'])
|
||||||
|
|
||||||
|
if self.current_analysis.false_entry_signals > 0 or \
|
||||||
|
self.current_analysis.false_exit_signals > 0 or \
|
||||||
|
len(self.current_analysis.false_indicators) > 0:
|
||||||
|
print(" => " + self.strategy_obj['name'] + ": bias detected!")
|
||||||
|
self.current_analysis.has_bias = True
|
||||||
|
else:
|
||||||
|
print(self.strategy_obj['name'] + ": no bias detected")
|
Loading…
Reference in New Issue
Block a user