From cf7c6d2e9c390c5118ac6baf84a9a42bd30677cc Mon Sep 17 00:00:00 2001 From: Janne Sinivirta Date: Mon, 5 Feb 2018 19:22:49 +0200 Subject: [PATCH] switch to properly using dates as indexes, makes date based searching and slicing a lot faster --- freqtrade/optimize/backtesting.py | 27 ++++++++++++++------------- 1 file changed, 14 insertions(+), 13 deletions(-) diff --git a/freqtrade/optimize/backtesting.py b/freqtrade/optimize/backtesting.py index d13708b90..e7d2a0d8e 100644 --- a/freqtrade/optimize/backtesting.py +++ b/freqtrade/optimize/backtesting.py @@ -71,28 +71,28 @@ def get_sell_trade_entry(pair, row, buy_subset, ticker, trade_count_lock, args): stake_amount = args['stake_amount'] max_open_trades = args.get('max_open_trades', 0) trade = Trade(open_rate=row.close, - open_date=row.date, + open_date=row.Index, stake_amount=stake_amount, amount=stake_amount / row.open, fee=exchange.get_fee() ) # calculate win/lose forwards from buy point - sell_subset = ticker[ticker.date > row.date][['close', 'date', 'sell']] + sell_subset = ticker[ticker.index > row.Index][['close', 'sell']] for row2 in sell_subset.itertuples(index=True): if max_open_trades > 0: # Increase trade_count_lock for every iteration - trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1 + trade_count_lock[row2.Index] = trade_count_lock.get(row2.Index, 0) + 1 # Buy is on is in the buy_subset there is a row that matches the date # of the sell event - buy_signal = not buy_subset[buy_subset.date == row2.date].empty - if(should_sell(trade, row2.close, row2.date, buy_signal, row2.sell)): + buy_signal = not buy_subset[buy_subset.index == row2.Index].empty + if(should_sell(trade, row2.close, row2.Index, buy_signal, row2.sell)): return row2, (pair, trade.calc_profit_percent(rate=row2.close), trade.calc_profit(rate=row2.close), - (row2.date - row.date).seconds // 60 - ), row2.date + (row2.Index - row.Index).seconds // 60 + ), row2.Index return None @@ -120,22 +120,23 @@ def backtest(args) -> DataFrame: for pair, pair_data in processed.items(): pair_data['buy'], pair_data['sell'] = 0, 0 ticker = populate_sell_trend(populate_buy_trend(pair_data)) + ticker.set_index('date', inplace=True) # for each buy point lock_pair_until = None - headers = ['buy', 'open', 'close', 'date', 'sell'] + headers = ['buy', 'open', 'close', 'sell'] buy_subset = ticker[(ticker.buy == 1) & (ticker.sell == 0)][headers] for row in buy_subset.itertuples(index=True): if realistic: - if lock_pair_until is not None and row.date <= lock_pair_until: + if lock_pair_until is not None and row.Index <= lock_pair_until: continue if max_open_trades > 0: # Check if max_open_trades has already been reached for the given date - if not trade_count_lock.get(row.date, 0) < max_open_trades: + if not trade_count_lock.get(row.Index, 0) < max_open_trades: continue if max_open_trades > 0: # Increase lock - trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1 + trade_count_lock[row.Index] = trade_count_lock.get(row.Index, 0) + 1 ret = get_sell_trade_entry(pair, row, buy_subset, ticker, trade_count_lock, args) @@ -148,8 +149,8 @@ def backtest(args) -> DataFrame: # record a tuple of pair, current_profit_percent, # entry-date, duration records.append((pair, trade_entry[1], - row.date.strftime('%s'), - row2.date.strftime('%s'), + row.Index.strftime('%s'), + row2.Index.strftime('%s'), row.Index, trade_entry[3])) # For now export inside backtest(), maybe change so that backtest() # returns a tuple like: (dataframe, records, logs, etc)