Merge branch 'develop' into test_coverage
This commit is contained in:
@@ -8,6 +8,7 @@ from pandas import DataFrame
|
||||
from freqtrade.exchange import get_ticker_history
|
||||
from freqtrade.optimize.hyperopt_conf import hyperopt_optimize_conf
|
||||
from freqtrade.analyze import populate_indicators, parse_ticker_dataframe
|
||||
from freqtrade import misc
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -155,6 +156,6 @@ def download_backtesting_testdata(datadir: str, pair: str, interval: int = 5) ->
|
||||
logger.debug("New End: {}".format(data[-1:][0]['T']))
|
||||
data = sorted(data, key=lambda data: data['T'])
|
||||
|
||||
file_dump_json(filename, data)
|
||||
misc.file_dump_json(filename, data)
|
||||
|
||||
return True
|
||||
|
@@ -66,17 +66,60 @@ def generate_text_table(
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
|
||||
|
||||
|
||||
def backtest(stake_amount: float, processed: Dict[str, DataFrame],
|
||||
max_open_trades: int = 0, realistic: bool = True, sell_profit_only: bool = False,
|
||||
stoploss: int = -1.00, use_sell_signal: bool = False) -> DataFrame:
|
||||
def get_trade_entry(pair, row, ticker, trade_count_lock, args):
|
||||
stake_amount = args['stake_amount']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
sell_profit_only = args.get('sell_profit_only', False)
|
||||
stoploss = args.get('stoploss', -1)
|
||||
use_sell_signal = args.get('use_sell_signal', False)
|
||||
trade = Trade(open_rate=row.close,
|
||||
open_date=row.date,
|
||||
stake_amount=stake_amount,
|
||||
amount=stake_amount / row.open,
|
||||
fee=exchange.get_fee()
|
||||
)
|
||||
|
||||
# calculate win/lose forwards from buy point
|
||||
sell_subset = ticker[row.Index + 1:][['close', 'date', 'sell']]
|
||||
for row2 in sell_subset.itertuples(index=True):
|
||||
if max_open_trades > 0:
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1
|
||||
|
||||
current_profit_percent = trade.calc_profit_percent(rate=row2.close)
|
||||
if (sell_profit_only and current_profit_percent < 0):
|
||||
continue
|
||||
if min_roi_reached(trade, row2.close, row2.date) or \
|
||||
(row2.sell == 1 and use_sell_signal) or \
|
||||
current_profit_percent <= stoploss:
|
||||
current_profit_btc = trade.calc_profit(rate=row2.close)
|
||||
return row2, (pair,
|
||||
current_profit_percent,
|
||||
current_profit_btc,
|
||||
row2.Index - row.Index,
|
||||
current_profit_btc > 0,
|
||||
current_profit_btc < 0
|
||||
)
|
||||
|
||||
|
||||
def backtest(args) -> DataFrame:
|
||||
"""
|
||||
Implements backtesting functionality
|
||||
:param stake_amount: btc amount to use for each trade
|
||||
:param processed: a processed dictionary with format {pair, data}
|
||||
:param max_open_trades: maximum number of concurrent trades (default: 0, disabled)
|
||||
:param realistic: do we try to simulate realistic trades? (default: True)
|
||||
:param args: a dict containing:
|
||||
stake_amount: btc amount to use for each trade
|
||||
processed: a processed dictionary with format {pair, data}
|
||||
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
|
||||
realistic: do we try to simulate realistic trades? (default: True)
|
||||
sell_profit_only: sell if profit only
|
||||
use_sell_signal: act on sell-signal
|
||||
stoploss: use stoploss
|
||||
:return: DataFrame
|
||||
"""
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
realistic = args.get('realistic', True)
|
||||
record = args.get('record', None)
|
||||
records = []
|
||||
trades = []
|
||||
trade_count_lock: dict = {}
|
||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
||||
@@ -99,41 +142,25 @@ def backtest(stake_amount: float, processed: Dict[str, DataFrame],
|
||||
# Increase lock
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
|
||||
trade = Trade(
|
||||
open_rate=row.close,
|
||||
open_date=row.date,
|
||||
stake_amount=stake_amount,
|
||||
amount=stake_amount / row.open,
|
||||
fee=exchange.get_fee()
|
||||
)
|
||||
|
||||
# calculate win/lose forwards from buy point
|
||||
sell_subset = ticker[row.Index + 1:][['close', 'date', 'sell']]
|
||||
for row2 in sell_subset.itertuples(index=True):
|
||||
if max_open_trades > 0:
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1
|
||||
|
||||
current_profit_percent = trade.calc_profit_percent(rate=row2.close)
|
||||
if (sell_profit_only and current_profit_percent < 0):
|
||||
continue
|
||||
if min_roi_reached(trade, row2.close, row2.date) or \
|
||||
(row2.sell == 1 and use_sell_signal) or \
|
||||
current_profit_percent <= stoploss:
|
||||
current_profit_btc = trade.calc_profit(rate=row2.close)
|
||||
lock_pair_until = row2.Index
|
||||
|
||||
trades.append(
|
||||
(
|
||||
pair,
|
||||
current_profit_percent,
|
||||
current_profit_btc,
|
||||
row2.Index - row.Index,
|
||||
current_profit_btc > 0,
|
||||
current_profit_btc < 0
|
||||
)
|
||||
)
|
||||
break
|
||||
ret = get_trade_entry(pair, row, ticker,
|
||||
trade_count_lock, args)
|
||||
if ret:
|
||||
row2, trade_entry = ret
|
||||
lock_pair_until = row2.Index
|
||||
trades.append(trade_entry)
|
||||
if record:
|
||||
# Note, need to be json.dump friendly
|
||||
# record a tuple of pair, current_profit_percent,
|
||||
# entry-date, duration
|
||||
records.append((pair, trade_entry[1],
|
||||
row.date.strftime('%s'),
|
||||
row2.date.strftime('%s'),
|
||||
row.Index, trade_entry[3]))
|
||||
# For now export inside backtest(), maybe change so that backtest()
|
||||
# returns a tuple like: (dataframe, records, logs, etc)
|
||||
if record and record.find('trades') >= 0:
|
||||
logger.info('Dumping backtest results')
|
||||
misc.file_dump_json('backtest-result.json', records)
|
||||
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration', 'profit', 'loss']
|
||||
return DataFrame.from_records(trades, columns=labels)
|
||||
|
||||
@@ -180,17 +207,18 @@ def start(args):
|
||||
# Print timeframe
|
||||
min_date, max_date = get_timeframe(preprocessed)
|
||||
logger.info('Measuring data from %s up to %s ...', min_date.isoformat(), max_date.isoformat())
|
||||
|
||||
# Execute backtest and print results
|
||||
results = backtest(
|
||||
stake_amount=config['stake_amount'],
|
||||
processed=preprocessed,
|
||||
max_open_trades=max_open_trades,
|
||||
realistic=args.realistic_simulation,
|
||||
sell_profit_only=config.get('experimental', {}).get('sell_profit_only', False),
|
||||
stoploss=config.get('stoploss'),
|
||||
use_sell_signal=config.get('experimental', {}).get('use_sell_signal', False)
|
||||
)
|
||||
sell_profit_only = config.get('experimental', {}).get('sell_profit_only', False)
|
||||
use_sell_signal = config.get('experimental', {}).get('use_sell_signal', False)
|
||||
results = backtest({'stake_amount': config['stake_amount'],
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'realistic': args.realistic_simulation,
|
||||
'sell_profit_only': sell_profit_only,
|
||||
'use_sell_signal': use_sell_signal,
|
||||
'stoploss': config.get('stoploss'),
|
||||
'record': args.export
|
||||
})
|
||||
logger.info(
|
||||
'\n==================================== BACKTESTING REPORT ====================================\n%s', # noqa
|
||||
generate_text_table(data, results, config['stake_currency'], args.ticker_interval)
|
||||
|
@@ -164,7 +164,9 @@ def optimizer(params):
|
||||
from freqtrade.optimize import backtesting
|
||||
backtesting.populate_buy_trend = buy_strategy_generator(params)
|
||||
|
||||
results = backtest(OPTIMIZE_CONFIG['stake_amount'], PROCESSED, stoploss=params['stoploss'])
|
||||
results = backtest({'stake_amount': OPTIMIZE_CONFIG['stake_amount'],
|
||||
'processed': PROCESSED,
|
||||
'stoploss': params['stoploss']})
|
||||
result_explanation = format_results(results)
|
||||
|
||||
total_profit = results.profit_percent.sum()
|
||||
|
Reference in New Issue
Block a user