sortino loss balance
This commit is contained in:
parent
dcd85e3e29
commit
ceb697f54c
133
contrib/loss_functions/SortinoLossBalance.py
Normal file
133
contrib/loss_functions/SortinoLossBalance.py
Normal file
@ -0,0 +1,133 @@
|
||||
"""
|
||||
SortinoHyperOptLoss
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
import os
|
||||
|
||||
|
||||
import logging
|
||||
from pandas import DataFrame, DatetimeIndex, Timedelta, date_range
|
||||
from scipy.ndimage.interpolation import shift
|
||||
import numpy as np
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
interval = os.getenv("FQT_TIMEFRAME") or "5m"
|
||||
slippage = 0.0005
|
||||
target = 0
|
||||
annualize = np.sqrt(365 * (Timedelta("1D") / Timedelta(interval)))
|
||||
|
||||
logger.info(f"SortinoLossBalance target is set to: {target}")
|
||||
|
||||
|
||||
class SortinoLossBalance(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
This implementation uses the Sortino Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(
|
||||
results: DataFrame,
|
||||
trade_count: int,
|
||||
min_date: datetime,
|
||||
max_date: datetime,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
Uses Sortino Ratio calculation.
|
||||
"""
|
||||
hloc = kwargs["processed"]
|
||||
timeframe = SortinoLossBalance.ticker_interval
|
||||
timedelta = Timedelta(timeframe)
|
||||
|
||||
date_index: DatetimeIndex = date_range(
|
||||
start=min_date, end=max_date, freq=timeframe, normalize=True
|
||||
)
|
||||
balance_total: np.ndarray = []
|
||||
for pair in hloc:
|
||||
pair_candles = hloc[pair].set_index("date").reindex(date_index)
|
||||
# index becomes open_time
|
||||
pair_trades = (
|
||||
results.loc[results["pair"].values == pair]
|
||||
.set_index("open_time")
|
||||
.resample(timeframe)
|
||||
.asfreq()
|
||||
.reindex(date_index)
|
||||
)
|
||||
open_rate = pair_trades["open_rate"].fillna(0).values
|
||||
open_time = pair_trades.index.values
|
||||
close_time = pair_trades["close_time"].values
|
||||
close = pair_candles["close"].values
|
||||
profits = pair_trades["profit_percent"].values - slippage
|
||||
# at the open_time candle, the balance is matched to the close of the candle
|
||||
pair_balance = np.where(
|
||||
# only the rows with actual trades
|
||||
(open_rate > 0)
|
||||
# only if the trade is not also closed on the same candle
|
||||
& (open_time != close_time),
|
||||
1 - open_rate / close - slippage,
|
||||
# or initialize to 0
|
||||
0,
|
||||
)
|
||||
# at the close_time candle, the balance just uses the profits col
|
||||
pair_balance = pair_balance + np.where(
|
||||
# only rows with actual trades
|
||||
(open_rate > 0)
|
||||
# the rows where a close happens
|
||||
& (open_time == close_time),
|
||||
# use to profits
|
||||
profits,
|
||||
# otherwise leave unchanged
|
||||
pair_balance,
|
||||
)
|
||||
|
||||
# how much time each trade was open, close - open time
|
||||
periods = close_time - open_time
|
||||
# how many candles each trade was open, set as a counter at each trade open_time index
|
||||
hops = np.nan_to_num(periods / timedelta).astype(int)
|
||||
|
||||
# each loop update one timeframe forward, the balance on each timeframe
|
||||
# where there is at least one hop left to do (>0)
|
||||
for _ in range(1, hops.max() + 1):
|
||||
# move hops and open_rate by one
|
||||
hops = shift(hops, 1, cval=0)
|
||||
open_rate = shift(open_rate, 1, cval=0)
|
||||
pair_balance = np.where(
|
||||
hops > 0, pair_balance + (1 - open_rate / close) - slippage, pair_balance
|
||||
)
|
||||
hops -= 1
|
||||
|
||||
# same as above but one loop per pair
|
||||
# trades_indexes = np.nonzero(hops)[0]
|
||||
# for i in trades_indexes:
|
||||
# # start from 1 because counters are set at the open_time balance
|
||||
# # which was already added previously
|
||||
# for c in range(1, hops[i]):
|
||||
# offset = i + c
|
||||
# # the open rate is always for the current date, not the offset
|
||||
# pair_balance[offset] += 1 - open_rate[i] / close[offset] - slippage
|
||||
|
||||
# add the pair balance to the total
|
||||
balance_total.append(pair_balance)
|
||||
balance_total = np.array(balance_total).sum(axis=0)
|
||||
|
||||
returns = balance_total.mean()
|
||||
# returns = balance_total.values.mean()
|
||||
|
||||
downside_returns = np.where(balance_total < 0, balance_total, 0)
|
||||
downside_risk = np.sqrt((downside_returns ** 2).sum() / len(date_index))
|
||||
|
||||
if downside_risk != 0.0:
|
||||
sortino_ratio = (returns - target) / downside_risk * annualize
|
||||
else:
|
||||
sortino_ratio = -np.iinfo(np.int32).max
|
||||
|
||||
# print(expected_returns_mean, down_stdev, sortino_ratio)
|
||||
return -sortino_ratio
|
Loading…
Reference in New Issue
Block a user