ensure loading historical df matches frequi indices
This commit is contained in:
parent
60d782e5c5
commit
ce8fbbf743
@ -238,9 +238,10 @@ class FreqaiDataDrawer:
|
||||
df_concat = pd.concat([pred_df.iloc[:abs(len_diff)], hist_df[pair]],
|
||||
ignore_index=True, keys=hist_df[pair].keys())
|
||||
else:
|
||||
df_concat = hist_df[pair].tail(len(pred_df.index))
|
||||
df_concat = hist_df[pair].tail(len(pred_df.index)).reset_index(drop=True)
|
||||
df_concat = df_concat.fillna(0)
|
||||
self.model_return_values[pair] = df_concat
|
||||
logger.info(f'Setting initial FreqUI plots from historical data for {pair}.')
|
||||
|
||||
else:
|
||||
for label in dk.label_list:
|
||||
|
@ -4,7 +4,7 @@ import logging
|
||||
import shutil
|
||||
import sqlite3
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple, Optional
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
@ -14,6 +14,7 @@ from sklearn import linear_model
|
||||
from sklearn.cluster import DBSCAN
|
||||
from sklearn.metrics.pairwise import pairwise_distances
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neighbors import NearestNeighbors
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
|
||||
@ -21,8 +22,6 @@ from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
from sklearn.neighbors import NearestNeighbors
|
||||
|
||||
|
||||
SECONDS_IN_DAY = 86400
|
||||
SECONDS_IN_HOUR = 3600
|
||||
@ -505,7 +504,7 @@ class FreqaiDataKitchen:
|
||||
point. This metric defines the neighborhood of trained data and is used
|
||||
for prediction confidence in the Dissimilarity Index
|
||||
"""
|
||||
logger.info("computing average mean distance for all training points")
|
||||
# logger.info("computing average mean distance for all training points")
|
||||
pairwise = pairwise_distances(
|
||||
self.data_dictionary["train_features"], n_jobs=self.thread_count)
|
||||
avg_mean_dist = pairwise.mean(axis=1).mean()
|
||||
@ -538,7 +537,7 @@ class FreqaiDataKitchen:
|
||||
|
||||
if (len(do_predict) - do_predict.sum()) > 0:
|
||||
logger.info(
|
||||
f"svm_remove_outliers() tossed {len(do_predict) - do_predict.sum()} predictions"
|
||||
f"SVM tossed {len(do_predict) - do_predict.sum()} predictions."
|
||||
)
|
||||
self.do_predict += do_predict
|
||||
self.do_predict -= 1
|
||||
@ -564,8 +563,8 @@ class FreqaiDataKitchen:
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"svm_remove_outliers() tossed {len(y_pred) - dropped_points.sum()}"
|
||||
f" train points from {len(y_pred)}"
|
||||
f"SVM tossed {len(y_pred) - dropped_points.sum()}"
|
||||
f" train points from {len(y_pred)} total points."
|
||||
)
|
||||
|
||||
# same for test data
|
||||
@ -582,8 +581,8 @@ class FreqaiDataKitchen:
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"svm_remove_outliers() tossed {len(y_pred) - dropped_points.sum()}"
|
||||
f" test points from {len(y_pred)}"
|
||||
f"SVM tossed {len(y_pred) - dropped_points.sum()}"
|
||||
f" test points from {len(y_pred)} total points."
|
||||
)
|
||||
|
||||
return
|
||||
@ -621,7 +620,7 @@ class FreqaiDataKitchen:
|
||||
|
||||
else:
|
||||
|
||||
MinPts = len(self.data_dictionary['train_features'].columns)*2
|
||||
MinPts = len(self.data_dictionary['train_features'].columns) * 2
|
||||
# measure pairwise distances to train_features.shape[1]*2 nearest neighbours
|
||||
neighbors = NearestNeighbors(
|
||||
n_neighbors=MinPts, n_jobs=self.thread_count)
|
||||
|
Loading…
Reference in New Issue
Block a user