Merge branch 'develop' of https://github.com/freqtrade/freqtrade into max-open-trades
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
""" Freqtrade bot """
|
||||
__version__ = '2022.12.dev'
|
||||
__version__ = '2023.1.dev'
|
||||
|
||||
if 'dev' in __version__:
|
||||
try:
|
||||
|
@@ -1,4 +1,6 @@
|
||||
import logging
|
||||
import math
|
||||
from datetime import datetime
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import numpy as np
|
||||
@@ -190,3 +192,119 @@ def calculate_cagr(days_passed: int, starting_balance: float, final_balance: flo
|
||||
:return: CAGR
|
||||
"""
|
||||
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1
|
||||
|
||||
|
||||
def calculate_expectancy(trades: pd.DataFrame) -> float:
|
||||
"""
|
||||
Calculate expectancy
|
||||
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
|
||||
:return: expectancy
|
||||
"""
|
||||
if len(trades) == 0:
|
||||
return 0
|
||||
|
||||
expectancy = 1
|
||||
|
||||
profit_sum = trades.loc[trades['profit_abs'] > 0, 'profit_abs'].sum()
|
||||
loss_sum = abs(trades.loc[trades['profit_abs'] < 0, 'profit_abs'].sum())
|
||||
nb_win_trades = len(trades.loc[trades['profit_abs'] > 0])
|
||||
nb_loss_trades = len(trades.loc[trades['profit_abs'] < 0])
|
||||
|
||||
if (nb_win_trades > 0) and (nb_loss_trades > 0):
|
||||
average_win = profit_sum / nb_win_trades
|
||||
average_loss = loss_sum / nb_loss_trades
|
||||
risk_reward_ratio = average_win / average_loss
|
||||
winrate = nb_win_trades / len(trades)
|
||||
expectancy = ((1 + risk_reward_ratio) * winrate) - 1
|
||||
elif nb_win_trades == 0:
|
||||
expectancy = 0
|
||||
|
||||
return expectancy
|
||||
|
||||
|
||||
def calculate_sortino(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
|
||||
starting_balance: float) -> float:
|
||||
"""
|
||||
Calculate sortino
|
||||
:param trades: DataFrame containing trades (requires columns profit_abs)
|
||||
:return: sortino
|
||||
"""
|
||||
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
|
||||
return 0
|
||||
|
||||
total_profit = trades['profit_abs'] / starting_balance
|
||||
days_period = max(1, (max_date - min_date).days)
|
||||
|
||||
expected_returns_mean = total_profit.sum() / days_period
|
||||
|
||||
down_stdev = np.std(trades.loc[trades['profit_abs'] < 0, 'profit_abs'] / starting_balance)
|
||||
|
||||
if down_stdev != 0:
|
||||
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
|
||||
else:
|
||||
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
|
||||
sortino_ratio = -100
|
||||
|
||||
# print(expected_returns_mean, down_stdev, sortino_ratio)
|
||||
return sortino_ratio
|
||||
|
||||
|
||||
def calculate_sharpe(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
|
||||
starting_balance: float) -> float:
|
||||
"""
|
||||
Calculate sharpe
|
||||
:param trades: DataFrame containing trades (requires column profit_abs)
|
||||
:return: sharpe
|
||||
"""
|
||||
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
|
||||
return 0
|
||||
|
||||
total_profit = trades['profit_abs'] / starting_balance
|
||||
days_period = max(1, (max_date - min_date).days)
|
||||
|
||||
expected_returns_mean = total_profit.sum() / days_period
|
||||
up_stdev = np.std(total_profit)
|
||||
|
||||
if up_stdev != 0:
|
||||
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
|
||||
else:
|
||||
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
||||
sharp_ratio = -100
|
||||
|
||||
# print(expected_returns_mean, up_stdev, sharp_ratio)
|
||||
return sharp_ratio
|
||||
|
||||
|
||||
def calculate_calmar(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
|
||||
starting_balance: float) -> float:
|
||||
"""
|
||||
Calculate calmar
|
||||
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
|
||||
:return: calmar
|
||||
"""
|
||||
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
|
||||
return 0
|
||||
|
||||
total_profit = trades['profit_abs'].sum() / starting_balance
|
||||
days_period = max(1, (max_date - min_date).days)
|
||||
|
||||
# adding slippage of 0.1% per trade
|
||||
# total_profit = total_profit - 0.0005
|
||||
expected_returns_mean = total_profit / days_period * 100
|
||||
|
||||
# calculate max drawdown
|
||||
try:
|
||||
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
|
||||
trades, value_col="profit_abs", starting_balance=starting_balance
|
||||
)
|
||||
except ValueError:
|
||||
max_drawdown = 0
|
||||
|
||||
if max_drawdown != 0:
|
||||
calmar_ratio = expected_returns_mean / max_drawdown * math.sqrt(365)
|
||||
else:
|
||||
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
|
||||
calmar_ratio = -100
|
||||
|
||||
# print(expected_returns_mean, max_drawdown, calmar_ratio)
|
||||
return calmar_ratio
|
||||
|
@@ -2035,8 +2035,8 @@ class Exchange:
|
||||
# Fetch OHLCV asynchronously
|
||||
s = '(' + arrow.get(since_ms // 1000).isoformat() + ') ' if since_ms is not None else ''
|
||||
logger.debug(
|
||||
"Fetching pair %s, interval %s, since %s %s...",
|
||||
pair, timeframe, since_ms, s
|
||||
"Fetching pair %s, %s, interval %s, since %s %s...",
|
||||
pair, candle_type, timeframe, since_ms, s
|
||||
)
|
||||
params = deepcopy(self._ft_has.get('ohlcv_params', {}))
|
||||
candle_limit = self.ohlcv_candle_limit(
|
||||
@@ -2050,11 +2050,12 @@ class Exchange:
|
||||
limit=candle_limit, params=params)
|
||||
else:
|
||||
# Funding rate
|
||||
data = await self._api_async.fetch_funding_rate_history(
|
||||
pair, since=since_ms,
|
||||
limit=candle_limit)
|
||||
# Convert funding rate to candle pattern
|
||||
data = [[x['timestamp'], x['fundingRate'], 0, 0, 0, 0] for x in data]
|
||||
data = await self._fetch_funding_rate_history(
|
||||
pair=pair,
|
||||
timeframe=timeframe,
|
||||
limit=candle_limit,
|
||||
since_ms=since_ms,
|
||||
)
|
||||
# Some exchanges sort OHLCV in ASC order and others in DESC.
|
||||
# Ex: Bittrex returns the list of OHLCV in ASC order (oldest first, newest last)
|
||||
# while GDAX returns the list of OHLCV in DESC order (newest first, oldest last)
|
||||
@@ -2082,6 +2083,24 @@ class Exchange:
|
||||
raise OperationalException(f'Could not fetch historical candle (OHLCV) data '
|
||||
f'for pair {pair}. Message: {e}') from e
|
||||
|
||||
async def _fetch_funding_rate_history(
|
||||
self,
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
limit: int,
|
||||
since_ms: Optional[int] = None,
|
||||
) -> List[List]:
|
||||
"""
|
||||
Fetch funding rate history - used to selectively override this by subclasses.
|
||||
"""
|
||||
# Funding rate
|
||||
data = await self._api_async.fetch_funding_rate_history(
|
||||
pair, since=since_ms,
|
||||
limit=limit)
|
||||
# Convert funding rate to candle pattern
|
||||
data = [[x['timestamp'], x['fundingRate'], 0, 0, 0, 0] for x in data]
|
||||
return data
|
||||
|
||||
# Fetch historic trades
|
||||
|
||||
@retrier_async
|
||||
@@ -2745,11 +2764,16 @@ class Exchange:
|
||||
"""
|
||||
Important: Must be fetching data from cached values as this is used by backtesting!
|
||||
PERPETUAL:
|
||||
gateio: https://www.gate.io/help/futures/perpetual/22160/calculation-of-liquidation-price
|
||||
gateio: https://www.gate.io/help/futures/futures/27724/liquidation-price-bankruptcy-price
|
||||
> Liquidation Price = (Entry Price ± Margin / Contract Multiplier / Size) /
|
||||
[ 1 ± (Maintenance Margin Ratio + Taker Rate)]
|
||||
Wherein, "+" or "-" depends on whether the contract goes long or short:
|
||||
"-" for long, and "+" for short.
|
||||
|
||||
okex: https://www.okex.com/support/hc/en-us/articles/
|
||||
360053909592-VI-Introduction-to-the-isolated-mode-of-Single-Multi-currency-Portfolio-margin
|
||||
|
||||
:param exchange_name:
|
||||
:param pair: Pair to calculate liquidation price for
|
||||
:param open_rate: Entry price of position
|
||||
:param is_short: True if the trade is a short, false otherwise
|
||||
:param amount: Absolute value of position size incl. leverage (in base currency)
|
||||
@@ -2789,7 +2813,7 @@ class Exchange:
|
||||
def get_maintenance_ratio_and_amt(
|
||||
self,
|
||||
pair: str,
|
||||
nominal_value: float = 0.0,
|
||||
nominal_value: float,
|
||||
) -> Tuple[float, Optional[float]]:
|
||||
"""
|
||||
Important: Must be fetching data from cached values as this is used by backtesting!
|
||||
|
@@ -9,8 +9,9 @@ from tabulate import tabulate
|
||||
|
||||
from freqtrade.constants import (DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT,
|
||||
Config)
|
||||
from freqtrade.data.metrics import (calculate_cagr, calculate_csum, calculate_market_change,
|
||||
calculate_max_drawdown)
|
||||
from freqtrade.data.metrics import (calculate_cagr, calculate_calmar, calculate_csum,
|
||||
calculate_expectancy, calculate_market_change,
|
||||
calculate_max_drawdown, calculate_sharpe, calculate_sortino)
|
||||
from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value
|
||||
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
|
||||
|
||||
@@ -448,6 +449,10 @@ def generate_strategy_stats(pairlist: List[str],
|
||||
'profit_total_long_abs': results.loc[~results['is_short'], 'profit_abs'].sum(),
|
||||
'profit_total_short_abs': results.loc[results['is_short'], 'profit_abs'].sum(),
|
||||
'cagr': calculate_cagr(backtest_days, start_balance, content['final_balance']),
|
||||
'expectancy': calculate_expectancy(results),
|
||||
'sortino': calculate_sortino(results, min_date, max_date, start_balance),
|
||||
'sharpe': calculate_sharpe(results, min_date, max_date, start_balance),
|
||||
'calmar': calculate_calmar(results, min_date, max_date, start_balance),
|
||||
'profit_factor': profit_factor,
|
||||
'backtest_start': min_date.strftime(DATETIME_PRINT_FORMAT),
|
||||
'backtest_start_ts': int(min_date.timestamp() * 1000),
|
||||
@@ -785,8 +790,13 @@ def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
strat_results['stake_currency'])),
|
||||
('Total profit %', f"{strat_results['profit_total']:.2%}"),
|
||||
('CAGR %', f"{strat_results['cagr']:.2%}" if 'cagr' in strat_results else 'N/A'),
|
||||
('Sortino', f"{strat_results['sortino']:.2f}" if 'sortino' in strat_results else 'N/A'),
|
||||
('Sharpe', f"{strat_results['sharpe']:.2f}" if 'sharpe' in strat_results else 'N/A'),
|
||||
('Calmar', f"{strat_results['calmar']:.2f}" if 'calmar' in strat_results else 'N/A'),
|
||||
('Profit factor', f'{strat_results["profit_factor"]:.2f}' if 'profit_factor'
|
||||
in strat_results else 'N/A'),
|
||||
('Expectancy', f"{strat_results['expectancy']:.2f}" if 'expectancy'
|
||||
in strat_results else 'N/A'),
|
||||
('Trades per day', strat_results['trades_per_day']),
|
||||
('Avg. daily profit %',
|
||||
f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"),
|
||||
|
@@ -135,7 +135,7 @@ class VolumePairList(IPairList):
|
||||
filtered_tickers = [
|
||||
v for k, v in tickers.items()
|
||||
if (self._exchange.get_pair_quote_currency(k) == self._stake_currency
|
||||
and (self._use_range or v[self._sort_key] is not None)
|
||||
and (self._use_range or v.get(self._sort_key) is not None)
|
||||
and v['symbol'] in _pairlist)]
|
||||
pairlist = [s['symbol'] for s in filtered_tickers]
|
||||
else:
|
||||
|
Reference in New Issue
Block a user