Merge branch 'develop' into pr/froggleston/7861

This commit is contained in:
Matthias
2023-03-19 15:00:20 +01:00
259 changed files with 23487 additions and 14834 deletions

View File

@@ -29,7 +29,7 @@ def get_strategy_run_id(strategy) -> str:
# Include _ft_params_from_file - so changing parameter files cause cache eviction
digest.update(rapidjson.dumps(
strategy._ft_params_from_file, default=str, number_mode=rapidjson.NM_NAN).encode('utf-8'))
with open(strategy.__file__, 'rb') as fp:
with Path(strategy.__file__).open('rb') as fp:
digest.update(fp.read())
return digest.hexdigest().lower()

View File

@@ -15,7 +15,7 @@ from pandas import DataFrame
from freqtrade import constants
from freqtrade.configuration import TimeRange, validate_config_consistency
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config, LongShort
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config, IntOrInf, LongShort
from freqtrade.data import history
from freqtrade.data.btanalysis import find_existing_backtest_stats, trade_list_to_dataframe
from freqtrade.data.converter import trim_dataframe, trim_dataframes
@@ -37,6 +37,7 @@ from freqtrade.plugins.protectionmanager import ProtectionManager
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.util.binance_mig import migrate_binance_futures_data
from freqtrade.wallets import Wallets
@@ -94,7 +95,7 @@ class Backtesting:
if self.config.get('strategy_list'):
if self.config.get('freqai', {}).get('enabled', False):
logger.warning("Using --strategy-list with FreqAI REQUIRES all strategies "
"to have identical populate_any_indicators.")
"to have identical feature_engineering_* functions.")
for strat in list(self.config['strategy_list']):
stratconf = deepcopy(self.config)
stratconf['strategy'] = strat
@@ -159,6 +160,7 @@ class Backtesting:
self._can_short = self.trading_mode != TradingMode.SPOT
self._position_stacking: bool = self.config.get('position_stacking', False)
self.enable_protections: bool = self.config.get('enable_protections', False)
migrate_binance_futures_data(config)
self.init_backtest()
@@ -440,7 +442,8 @@ class Backtesting:
side_1 * abs(self.strategy.trailing_stop_positive / leverage)))
else:
# Worst case: price ticks tiny bit above open and dives down.
stop_rate = row[OPEN_IDX] * (1 - side_1 * abs(trade.stop_loss_pct / leverage))
stop_rate = row[OPEN_IDX] * (1 - side_1 * abs(
(trade.stop_loss_pct or 0.0) / leverage))
if is_short:
assert stop_rate > row[LOW_IDX]
else:
@@ -472,7 +475,7 @@ class Backtesting:
# - (Expected abs profit - open_rate - open_fee) / (fee_close -1)
roi_rate = trade.open_rate * roi / leverage
open_fee_rate = side_1 * trade.open_rate * (1 + side_1 * trade.fee_open)
close_rate = -(roi_rate + open_fee_rate) / (trade.fee_close - side_1 * 1)
close_rate = -(roi_rate + open_fee_rate) / ((trade.fee_close or 0.0) - side_1 * 1)
if is_short:
is_new_roi = row[OPEN_IDX] < close_rate
else:
@@ -563,7 +566,7 @@ class Backtesting:
pos_trade = self._get_exit_for_signal(trade, row, exit_, amount)
if pos_trade is not None:
order = pos_trade.orders[-1]
if self._get_order_filled(order.price, row):
if self._get_order_filled(order.ft_price, row):
order.close_bt_order(current_date, trade)
trade.recalc_trade_from_orders()
self.wallets.update()
@@ -575,26 +578,6 @@ class Backtesting:
""" Rate is within candle, therefore filled"""
return row[LOW_IDX] <= rate <= row[HIGH_IDX]
def _get_exit_trade_entry_for_candle(self, trade: LocalTrade,
row: Tuple) -> Optional[LocalTrade]:
# Check if we need to adjust our current positions
if self.strategy.position_adjustment_enable:
trade = self._get_adjust_trade_entry_for_candle(trade, row)
enter = row[SHORT_IDX] if trade.is_short else row[LONG_IDX]
exit_sig = row[ESHORT_IDX] if trade.is_short else row[ELONG_IDX]
exits = self.strategy.should_exit(
trade, row[OPEN_IDX], row[DATE_IDX].to_pydatetime(), # type: ignore
enter=enter, exit_=exit_sig,
low=row[LOW_IDX], high=row[HIGH_IDX]
)
for exit_ in exits:
t = self._get_exit_for_signal(trade, row, exit_)
if t:
return t
return None
def _get_exit_for_signal(
self, trade: LocalTrade, row: Tuple, exit_: ExitCheckTuple,
amount: Optional[float] = None) -> Optional[LocalTrade]:
@@ -664,7 +647,7 @@ class Backtesting:
return None
def _exit_trade(self, trade: LocalTrade, sell_row: Tuple,
close_rate: float, amount: float = None) -> Optional[LocalTrade]:
close_rate: float, amount: Optional[float] = None) -> Optional[LocalTrade]:
self.order_id_counter += 1
exit_candle_time = sell_row[DATE_IDX].to_pydatetime()
order_type = self.strategy.order_types['exit']
@@ -684,6 +667,7 @@ class Backtesting:
side=trade.exit_side,
order_type=order_type,
status="open",
ft_price=close_rate,
price=close_rate,
average=close_rate,
amount=amount,
@@ -694,11 +678,10 @@ class Backtesting:
trade.orders.append(order)
return trade
def _get_exit_trade_entry(
self, trade: LocalTrade, row: Tuple, is_first: bool) -> Optional[LocalTrade]:
def _check_trade_exit(self, trade: LocalTrade, row: Tuple) -> Optional[LocalTrade]:
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
if is_first and self.trading_mode == TradingMode.FUTURES:
if self.trading_mode == TradingMode.FUTURES:
trade.funding_fees = self.exchange.calculate_funding_fees(
self.futures_data[trade.pair],
amount=trade.amount,
@@ -707,7 +690,22 @@ class Backtesting:
close_date=exit_candle_time,
)
return self._get_exit_trade_entry_for_candle(trade, row)
# Check if we need to adjust our current positions
if self.strategy.position_adjustment_enable:
trade = self._get_adjust_trade_entry_for_candle(trade, row)
enter = row[SHORT_IDX] if trade.is_short else row[LONG_IDX]
exit_sig = row[ESHORT_IDX] if trade.is_short else row[ELONG_IDX]
exits = self.strategy.should_exit(
trade, row[OPEN_IDX], row[DATE_IDX].to_pydatetime(), # type: ignore
enter=enter, exit_=exit_sig,
low=row[LOW_IDX], high=row[HIGH_IDX]
)
for exit_ in exits:
t = self._get_exit_for_signal(trade, row, exit_)
if t:
return t
return None
def get_valid_price_and_stake(
self, pair: str, row: Tuple, propose_rate: float, stake_amount: float,
@@ -753,7 +751,7 @@ class Backtesting:
leverage = min(max(leverage, 1.0), max_leverage)
min_stake_amount = self.exchange.get_min_pair_stake_amount(
pair, propose_rate, -0.05, leverage=leverage) or 0
pair, propose_rate, -0.05 if not pos_adjust else 0.0, leverage=leverage) or 0
max_stake_amount = self.exchange.get_max_pair_stake_amount(
pair, propose_rate, leverage=leverage)
stake_available = self.wallets.get_available_stake_amount()
@@ -771,6 +769,7 @@ class Backtesting:
stake_amount=stake_amount,
min_stake_amount=min_stake_amount,
max_stake_amount=max_stake_amount,
trade_amount=trade.stake_amount if trade else None
)
return propose_rate, stake_amount_val, leverage, min_stake_amount
@@ -780,6 +779,11 @@ class Backtesting:
trade: Optional[LocalTrade] = None,
requested_rate: Optional[float] = None,
requested_stake: Optional[float] = None) -> Optional[LocalTrade]:
"""
:param trade: Trade to adjust - initial entry if None
:param requested_rate: Adjusted entry rate
:param requested_stake: Stake amount for adjusted orders (`adjust_entry_price`).
"""
current_time = row[DATE_IDX].to_pydatetime()
entry_tag = row[ENTER_TAG_IDX] if len(row) >= ENTER_TAG_IDX + 1 else None
@@ -805,7 +809,7 @@ class Backtesting:
return trade
time_in_force = self.strategy.order_time_in_force['entry']
if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount):
if stake_amount and (not min_stake_amount or stake_amount >= min_stake_amount):
self.order_id_counter += 1
base_currency = self.exchange.get_pair_base_currency(pair)
amount_p = (stake_amount / propose_rate) * leverage
@@ -868,6 +872,7 @@ class Backtesting:
open_rate=propose_rate,
amount=amount,
stake_amount=trade.stake_amount,
leverage=trade.leverage,
wallet_balance=trade.stake_amount,
is_short=is_short,
))
@@ -886,6 +891,7 @@ class Backtesting:
order_date=current_time,
order_filled_date=current_time,
order_update_date=current_time,
ft_price=propose_rate,
price=propose_rate,
average=propose_rate,
amount=amount,
@@ -894,7 +900,7 @@ class Backtesting:
cost=stake_amount + trade.fee_open,
)
trade.orders.append(order)
if pos_adjust and self._get_order_filled(order.price, row):
if pos_adjust and self._get_order_filled(order.ft_price, row):
order.close_bt_order(current_time, trade)
else:
trade.open_order_id = str(self.order_id_counter)
@@ -921,8 +927,9 @@ class Backtesting:
trade.close(exit_row[OPEN_IDX], show_msg=False)
LocalTrade.close_bt_trade(trade)
def trade_slot_available(self, max_open_trades: int, open_trade_count: int) -> bool:
def trade_slot_available(self, open_trade_count: int) -> bool:
# Always allow trades when max_open_trades is enabled.
max_open_trades: IntOrInf = self.config['max_open_trades']
if max_open_trades <= 0 or open_trade_count < max_open_trades:
return True
# Rejected trade
@@ -1006,15 +1013,15 @@ class Backtesting:
# only check on new candles for open entry orders
if order.side == trade.entry_side and current_time > order.order_date_utc:
requested_rate = strategy_safe_wrapper(self.strategy.adjust_entry_price,
default_retval=order.price)(
default_retval=order.ft_price)(
trade=trade, # type: ignore[arg-type]
order=order, pair=trade.pair, current_time=current_time,
proposed_rate=row[OPEN_IDX], current_order_rate=order.price,
proposed_rate=row[OPEN_IDX], current_order_rate=order.ft_price,
entry_tag=trade.enter_tag, side=trade.trade_direction
) # default value is current order price
# cancel existing order whenever a new rate is requested (or None)
if requested_rate == order.price:
if requested_rate == order.ft_price:
# assumption: there can't be multiple open entry orders at any given time
return False
else:
@@ -1026,7 +1033,8 @@ class Backtesting:
if requested_rate:
self._enter_trade(pair=trade.pair, row=row, trade=trade,
requested_rate=requested_rate,
requested_stake=(order.remaining * order.price / trade.leverage),
requested_stake=(
order.safe_remaining * order.ft_price / trade.leverage),
direction='short' if trade.is_short else 'long')
self.replaced_entry_orders += 1
else:
@@ -1064,7 +1072,8 @@ class Backtesting:
def backtest_loop(
self, row: Tuple, pair: str, current_time: datetime, end_date: datetime,
max_open_trades: int, open_trade_count_start: int, is_first: bool = True) -> int:
open_trade_count_start: int, trade_dir: Optional[LongShort],
is_first: bool = True) -> int:
"""
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
@@ -1083,7 +1092,6 @@ class Backtesting:
# max_open_trades must be respected
# don't open on the last row
# We only open trades on the main candle, not on detail candles
trade_dir = self.check_for_trade_entry(row)
if (
(self._position_stacking or len(LocalTrade.bt_trades_open_pp[pair]) == 0)
and is_first
@@ -1091,7 +1099,7 @@ class Backtesting:
and trade_dir is not None
and not PairLocks.is_pair_locked(pair, row[DATE_IDX], trade_dir)
):
if (self.trade_slot_available(max_open_trades, open_trade_count_start)):
if (self.trade_slot_available(open_trade_count_start)):
trade = self._enter_trade(pair, row, trade_dir)
if trade:
# TODO: hacky workaround to avoid opening > max_open_trades
@@ -1107,18 +1115,18 @@ class Backtesting:
for trade in list(LocalTrade.bt_trades_open_pp[pair]):
# 3. Process entry orders.
order = trade.select_order(trade.entry_side, is_open=True)
if order and self._get_order_filled(order.price, row):
if order and self._get_order_filled(order.ft_price, row):
order.close_bt_order(current_time, trade)
trade.open_order_id = None
self.wallets.update()
# 4. Create exit orders (if any)
if not trade.open_order_id:
self._get_exit_trade_entry(trade, row, is_first) # Place exit order if necessary
self._check_trade_exit(trade, row) # Place exit order if necessary
# 5. Process exit orders.
order = trade.select_order(trade.exit_side, is_open=True)
if order and self._get_order_filled(order.price, row):
if order and self._get_order_filled(order.ft_price, row):
order.close_bt_order(current_time, trade)
trade.open_order_id = None
sub_trade = order.safe_amount_after_fee != trade.amount
@@ -1127,7 +1135,7 @@ class Backtesting:
trade.recalc_trade_from_orders()
else:
trade.close_date = current_time
trade.close(order.price, show_msg=False)
trade.close(order.ft_price, show_msg=False)
# logger.debug(f"{pair} - Backtesting exit {trade}")
LocalTrade.close_bt_trade(trade)
@@ -1136,8 +1144,7 @@ class Backtesting:
return open_trade_count_start
def backtest(self, processed: Dict,
start_date: datetime, end_date: datetime,
max_open_trades: int = 0) -> Dict[str, Any]:
start_date: datetime, end_date: datetime) -> Dict[str, Any]:
"""
Implement backtesting functionality
@@ -1149,7 +1156,6 @@ class Backtesting:
optimize memory usage!
:param start_date: backtesting timerange start datetime
:param end_date: backtesting timerange end datetime
:param max_open_trades: maximum number of concurrent trades, <= 0 means unlimited
:return: DataFrame with trades (results of backtesting)
"""
self.prepare_backtest(self.enable_protections)
@@ -1179,7 +1185,15 @@ class Backtesting:
indexes[pair] = row_index
self.dataprovider._set_dataframe_max_index(row_index)
current_detail_time: datetime = row[DATE_IDX].to_pydatetime()
if self.timeframe_detail and pair in self.detail_data:
trade_dir: Optional[LongShort] = self.check_for_trade_entry(row)
if (
(trade_dir is not None or len(LocalTrade.bt_trades_open_pp[pair]) > 0)
and self.timeframe_detail and pair in self.detail_data
):
# Spread out into detail timeframe.
# Should only happen when we are either in a trade for this pair
# or when we got the signal for a new trade.
exit_candle_end = current_detail_time + timedelta(minutes=self.timeframe_min)
detail_data = self.detail_data[pair]
@@ -1190,8 +1204,9 @@ class Backtesting:
if len(detail_data) == 0:
# Fall back to "regular" data if no detail data was found for this candle
open_trade_count_start = self.backtest_loop(
row, pair, current_time, end_date, max_open_trades,
open_trade_count_start)
row, pair, current_time, end_date,
open_trade_count_start, trade_dir)
continue
detail_data.loc[:, 'enter_long'] = row[LONG_IDX]
detail_data.loc[:, 'exit_long'] = row[ELONG_IDX]
detail_data.loc[:, 'enter_short'] = row[SHORT_IDX]
@@ -1202,13 +1217,14 @@ class Backtesting:
current_time_det = current_time
for det_row in detail_data[HEADERS].values.tolist():
open_trade_count_start = self.backtest_loop(
det_row, pair, current_time_det, end_date, max_open_trades,
open_trade_count_start, is_first)
det_row, pair, current_time_det, end_date,
open_trade_count_start, trade_dir, is_first)
current_time_det += timedelta(minutes=self.timeframe_detail_min)
is_first = False
else:
open_trade_count_start = self.backtest_loop(
row, pair, current_time, end_date, max_open_trades, open_trade_count_start)
row, pair, current_time, end_date,
open_trade_count_start, trade_dir)
# Move time one configured time_interval ahead.
self.progress.increment()
@@ -1240,13 +1256,11 @@ class Backtesting:
self._set_strategy(strat)
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
# Must come from strategy config, as the strategy may modify this setting.
max_open_trades = self.strategy.config['max_open_trades']
else:
if not self.config.get('use_max_market_positions', True):
logger.info(
'Ignoring max_open_trades (--disable-max-market-positions was used) ...')
max_open_trades = 0
self.strategy.max_open_trades = float('inf')
self.config.update({'max_open_trades': self.strategy.max_open_trades})
# need to reprocess data every time to populate signals
preprocessed = self.strategy.advise_all_indicators(data)
@@ -1269,7 +1283,6 @@ class Backtesting:
processed=preprocessed,
start_date=min_date,
end_date=max_date,
max_open_trades=max_open_trades,
)
backtest_end_time = datetime.now(timezone.utc)
results.update({

View File

@@ -74,6 +74,7 @@ class Hyperopt:
self.roi_space: List[Dimension] = []
self.stoploss_space: List[Dimension] = []
self.trailing_space: List[Dimension] = []
self.max_open_trades_space: List[Dimension] = []
self.dimensions: List[Dimension] = []
self.config = config
@@ -117,11 +118,10 @@ class Hyperopt:
self.current_best_epoch: Optional[Dict[str, Any]] = None
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
self.max_open_trades = self.config['max_open_trades']
else:
if not self.config.get('use_max_market_positions', True):
logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
self.max_open_trades = 0
self.backtesting.strategy.max_open_trades = float('inf')
config.update({'max_open_trades': self.backtesting.strategy.max_open_trades})
if HyperoptTools.has_space(self.config, 'sell'):
# Make sure use_exit_signal is enabled
@@ -209,6 +209,10 @@ class Hyperopt:
result['stoploss'] = {p.name: params.get(p.name) for p in self.stoploss_space}
if HyperoptTools.has_space(self.config, 'trailing'):
result['trailing'] = self.custom_hyperopt.generate_trailing_params(params)
if HyperoptTools.has_space(self.config, 'trades'):
result['max_open_trades'] = {
'max_open_trades': self.backtesting.strategy.max_open_trades
if self.backtesting.strategy.max_open_trades != float('inf') else -1}
return result
@@ -229,6 +233,8 @@ class Hyperopt:
'trailing_stop_positive_offset': strategy.trailing_stop_positive_offset,
'trailing_only_offset_is_reached': strategy.trailing_only_offset_is_reached,
}
if not HyperoptTools.has_space(self.config, 'trades'):
result['max_open_trades'] = {'max_open_trades': strategy.max_open_trades}
return result
def print_results(self, results) -> None:
@@ -280,8 +286,13 @@ class Hyperopt:
logger.debug("Hyperopt has 'trailing' space")
self.trailing_space = self.custom_hyperopt.trailing_space()
if HyperoptTools.has_space(self.config, 'trades'):
logger.debug("Hyperopt has 'trades' space")
self.max_open_trades_space = self.custom_hyperopt.max_open_trades_space()
self.dimensions = (self.buy_space + self.sell_space + self.protection_space
+ self.roi_space + self.stoploss_space + self.trailing_space)
+ self.roi_space + self.stoploss_space + self.trailing_space
+ self.max_open_trades_space)
def assign_params(self, params_dict: Dict, category: str) -> None:
"""
@@ -328,6 +339,20 @@ class Hyperopt:
self.backtesting.strategy.trailing_only_offset_is_reached = \
d['trailing_only_offset_is_reached']
if HyperoptTools.has_space(self.config, 'trades'):
if self.config["stake_amount"] == "unlimited" and \
(params_dict['max_open_trades'] == -1 or params_dict['max_open_trades'] == 0):
# Ignore unlimited max open trades if stake amount is unlimited
params_dict.update({'max_open_trades': self.config['max_open_trades']})
updated_max_open_trades = int(params_dict['max_open_trades']) \
if (params_dict['max_open_trades'] != -1
and params_dict['max_open_trades'] != 0) else float('inf')
self.config.update({'max_open_trades': updated_max_open_trades})
self.backtesting.strategy.max_open_trades = updated_max_open_trades
with self.data_pickle_file.open('rb') as f:
processed = load(f, mmap_mode='r')
if self.analyze_per_epoch:
@@ -337,8 +362,7 @@ class Hyperopt:
bt_results = self.backtesting.backtest(
processed=processed,
start_date=self.min_date,
end_date=self.max_date,
max_open_trades=self.max_open_trades,
end_date=self.max_date
)
backtest_end_time = datetime.now(timezone.utc)
bt_results.update({

View File

@@ -91,5 +91,8 @@ class HyperOptAuto(IHyperOpt):
def trailing_space(self) -> List['Dimension']:
return self._get_func('trailing_space')()
def max_open_trades_space(self) -> List['Dimension']:
return self._get_func('max_open_trades_space')()
def generate_estimator(self, dimensions: List['Dimension'], **kwargs) -> EstimatorType:
return self._get_func('generate_estimator')(dimensions=dimensions, **kwargs)

View File

@@ -191,6 +191,16 @@ class IHyperOpt(ABC):
Categorical([True, False], name='trailing_only_offset_is_reached'),
]
def max_open_trades_space(self) -> List[Dimension]:
"""
Create a max open trades space.
You may override it in your custom Hyperopt class.
"""
return [
Integer(-1, 10, name='max_open_trades'),
]
# This is needed for proper unpickling the class attribute timeframe
# which is set to the actual value by the resolver.
# Why do I still need such shamanic mantras in modern python?

View File

@@ -5,13 +5,11 @@ This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from datetime import datetime
from math import sqrt as msqrt
from typing import Any, Dict
from pandas import DataFrame
from freqtrade.constants import Config
from freqtrade.data.metrics import calculate_max_drawdown
from freqtrade.data.metrics import calculate_calmar
from freqtrade.optimize.hyperopt import IHyperOptLoss
@@ -23,42 +21,15 @@ class CalmarHyperOptLoss(IHyperOptLoss):
"""
@staticmethod
def hyperopt_loss_function(
results: DataFrame,
trade_count: int,
min_date: datetime,
max_date: datetime,
config: Config,
processed: Dict[str, DataFrame],
backtest_stats: Dict[str, Any],
*args,
**kwargs
) -> float:
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
config: Config, *args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Calmar Ratio calculation.
"""
total_profit = backtest_stats["profit_total"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period * 100
# calculate max drawdown
try:
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
results, value_col="profit_abs"
)
except ValueError:
max_drawdown = 0
if max_drawdown != 0:
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(365)
else:
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
calmar_ratio = -20.0
starting_balance = config['dry_run_wallet']
calmar_ratio = calculate_calmar(results, min_date, max_date, starting_balance)
# print(expected_returns_mean, max_drawdown, calmar_ratio)
return -calmar_ratio

View File

@@ -6,9 +6,10 @@ Hyperoptimization.
"""
from datetime import datetime
import numpy as np
from pandas import DataFrame
from freqtrade.constants import Config
from freqtrade.data.metrics import calculate_sharpe
from freqtrade.optimize.hyperopt import IHyperOptLoss
@@ -22,25 +23,13 @@ class SharpeHyperOptLoss(IHyperOptLoss):
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
config: Config, *args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sharpe Ratio calculation.
"""
total_profit = results["profit_ratio"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period
up_stdev = np.std(total_profit)
if up_stdev != 0:
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -20.
starting_balance = config['dry_run_wallet']
sharp_ratio = calculate_sharpe(results, min_date, max_date, starting_balance)
# print(expected_returns_mean, up_stdev, sharp_ratio)
return -sharp_ratio

View File

@@ -44,7 +44,7 @@ class SharpeHyperOptLossDaily(IHyperOptLoss):
sum_daily = (
results.resample(resample_freq, on='close_date').agg(
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
{"profit_ratio_after_slippage": 'sum'}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_ratio_after_slippage"] - risk_free_rate

View File

@@ -6,9 +6,10 @@ Hyperoptimization.
"""
from datetime import datetime
import numpy as np
from pandas import DataFrame
from freqtrade.constants import Config
from freqtrade.data.metrics import calculate_sortino
from freqtrade.optimize.hyperopt import IHyperOptLoss
@@ -22,28 +23,13 @@ class SortinoHyperOptLoss(IHyperOptLoss):
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
config: Config, *args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sortino Ratio calculation.
"""
total_profit = results["profit_ratio"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period
results['downside_returns'] = 0
results.loc[total_profit < 0, 'downside_returns'] = results['profit_ratio']
down_stdev = np.std(results['downside_returns'])
if down_stdev != 0:
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
else:
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
sortino_ratio = -20.
starting_balance = config['dry_run_wallet']
sortino_ratio = calculate_sortino(results, min_date, max_date, starting_balance)
# print(expected_returns_mean, down_stdev, sortino_ratio)
return -sortino_ratio

View File

@@ -46,7 +46,7 @@ class SortinoHyperOptLossDaily(IHyperOptLoss):
sum_daily = (
results.resample(resample_freq, on='close_date').agg(
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
{"profit_ratio_after_slippage": 'sum'}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_ratio_after_slippage"] - minimum_acceptable_return

15
freqtrade/optimize/hyperopt_tools.py Executable file → Normal file
View File

@@ -96,7 +96,7 @@ class HyperoptTools():
Tell if the space value is contained in the configuration
"""
# 'trailing' and 'protection spaces are not included in the 'default' set of spaces
if space in ('trailing', 'protection'):
if space in ('trailing', 'protection', 'trades'):
return any(s in config['spaces'] for s in [space, 'all'])
else:
return any(s in config['spaces'] for s in [space, 'all', 'default'])
@@ -170,7 +170,7 @@ class HyperoptTools():
@staticmethod
def show_epoch_details(results, total_epochs: int, print_json: bool,
no_header: bool = False, header_str: str = None) -> None:
no_header: bool = False, header_str: Optional[str] = None) -> None:
"""
Display details of the hyperopt result
"""
@@ -187,7 +187,8 @@ class HyperoptTools():
if print_json:
result_dict: Dict = {}
for s in ['buy', 'sell', 'protection', 'roi', 'stoploss', 'trailing']:
for s in ['buy', 'sell', 'protection',
'roi', 'stoploss', 'trailing', 'max_open_trades']:
HyperoptTools._params_update_for_json(result_dict, params, non_optimized, s)
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
@@ -201,6 +202,8 @@ class HyperoptTools():
HyperoptTools._params_pretty_print(params, 'roi', "ROI table:", non_optimized)
HyperoptTools._params_pretty_print(params, 'stoploss', "Stoploss:", non_optimized)
HyperoptTools._params_pretty_print(params, 'trailing', "Trailing stop:", non_optimized)
HyperoptTools._params_pretty_print(
params, 'max_open_trades', "Max Open Trades:", non_optimized)
@staticmethod
def _params_update_for_json(result_dict, params, non_optimized, space: str) -> None:
@@ -239,7 +242,9 @@ class HyperoptTools():
if space == "stoploss":
stoploss = safe_value_fallback2(space_params, no_params, space, space)
result += (f"stoploss = {stoploss}{appendix}")
elif space == "max_open_trades":
max_open_trades = safe_value_fallback2(space_params, no_params, space, space)
result += (f"max_open_trades = {max_open_trades}{appendix}")
elif space == "roi":
result = result[:-1] + f'{appendix}\n'
minimal_roi_result = rapidjson.dumps({
@@ -259,7 +264,7 @@ class HyperoptTools():
print(result)
@staticmethod
def _space_params(params, space: str, r: int = None) -> Dict:
def _space_params(params, space: str, r: Optional[int] = None) -> Dict:
d = params.get(space)
if d:
# Round floats to `r` digits after the decimal point if requested

View File

@@ -8,9 +8,10 @@ from pandas import DataFrame, to_datetime
from tabulate import tabulate
from freqtrade.constants import (DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT,
Config)
from freqtrade.data.metrics import (calculate_cagr, calculate_csum, calculate_market_change,
calculate_max_drawdown)
Config, IntOrInf)
from freqtrade.data.metrics import (calculate_cagr, calculate_calmar, calculate_csum,
calculate_expectancy, calculate_market_change,
calculate_max_drawdown, calculate_sharpe, calculate_sortino)
from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
@@ -199,7 +200,7 @@ def generate_tag_metrics(tag_type: str,
return []
def generate_exit_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
def generate_exit_reason_stats(max_open_trades: IntOrInf, results: DataFrame) -> List[Dict]:
"""
Generate small table outlining Backtest results
:param max_open_trades: Max_open_trades parameter
@@ -457,6 +458,10 @@ def generate_strategy_stats(pairlist: List[str],
'profit_total_long_abs': results.loc[~results['is_short'], 'profit_abs'].sum(),
'profit_total_short_abs': results.loc[results['is_short'], 'profit_abs'].sum(),
'cagr': calculate_cagr(backtest_days, start_balance, content['final_balance']),
'expectancy': calculate_expectancy(results),
'sortino': calculate_sortino(results, min_date, max_date, start_balance),
'sharpe': calculate_sharpe(results, min_date, max_date, start_balance),
'calmar': calculate_calmar(results, min_date, max_date, start_balance),
'profit_factor': profit_factor,
'backtest_start': min_date.strftime(DATETIME_PRINT_FORMAT),
'backtest_start_ts': int(min_date.timestamp() * 1000),
@@ -794,8 +799,13 @@ def text_table_add_metrics(strat_results: Dict) -> str:
strat_results['stake_currency'])),
('Total profit %', f"{strat_results['profit_total']:.2%}"),
('CAGR %', f"{strat_results['cagr']:.2%}" if 'cagr' in strat_results else 'N/A'),
('Sortino', f"{strat_results['sortino']:.2f}" if 'sortino' in strat_results else 'N/A'),
('Sharpe', f"{strat_results['sharpe']:.2f}" if 'sharpe' in strat_results else 'N/A'),
('Calmar', f"{strat_results['calmar']:.2f}" if 'calmar' in strat_results else 'N/A'),
('Profit factor', f'{strat_results["profit_factor"]:.2f}' if 'profit_factor'
in strat_results else 'N/A'),
('Expectancy', f"{strat_results['expectancy']:.2f}" if 'expectancy'
in strat_results else 'N/A'),
('Trades per day', strat_results['trades_per_day']),
('Avg. daily profit %',
f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"),

View File

@@ -1,4 +1,3 @@
# flake8: noqa: F401
from skopt.space import Categorical, Dimension, Integer, Real
from skopt.space import Categorical, Dimension, Integer, Real # noqa: F401
from .decimalspace import SKDecimal
from .decimalspace import SKDecimal # noqa: F401