callback function and TDQN model added
This commit is contained in:
parent
01232e9a1f
commit
cd3fe44424
@ -5,14 +5,23 @@ import numpy as np
|
||||
import numpy.typing as npt
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
from stable_baselines.common.callbacks import CallbackList, CheckpointCallback, EvalCallback
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_agent import RLPrediction_agent
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_agent_v2 import TDQN
|
||||
#from freqtrade.freqai.prediction_models.RL.RLPrediction_env import GymAnytrading
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_env import DEnv
|
||||
from freqtrade.persistence import Trade
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
|
||||
import torch as th
|
||||
from stable_baselines3.common.callbacks import CallbackList, CheckpointCallback, EvalCallback, StopTrainingOnRewardThreshold
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
from stable_baselines3 import PPO
|
||||
|
||||
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -74,47 +83,127 @@ class ReinforcementLearningModel(IFreqaiModel):
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
|
||||
train_df = data_dictionary["train_features"]
|
||||
# train_labels = data_dictionary["train_labels"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
# test_labels = data_dictionary["test_labels"]
|
||||
# train_df = data_dictionary["train_features"]
|
||||
# # train_labels = data_dictionary["train_labels"]
|
||||
# test_df = data_dictionary["test_features"]
|
||||
# # test_labels = data_dictionary["test_labels"]
|
||||
|
||||
# sep = '/'
|
||||
# coin = pair.split(sep, 1)[0]
|
||||
# price = train_df[f"%-{coin}raw_price_{self.config['timeframe']}"]
|
||||
# price.reset_index(inplace=True, drop=True)
|
||||
# price = price.to_frame()
|
||||
price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index))
|
||||
# # sep = '/'
|
||||
# # coin = pair.split(sep, 1)[0]
|
||||
# # price = train_df[f"%-{coin}raw_price_{self.config['timeframe']}"]
|
||||
# # price.reset_index(inplace=True, drop=True)
|
||||
# # price = price.to_frame()
|
||||
# price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index))
|
||||
# price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(test_df.index))
|
||||
|
||||
# #train_env = GymAnytrading(train_df, price, self.CONV_WIDTH)
|
||||
|
||||
# agent_params = self.freqai_info['model_training_parameters']
|
||||
# reward_params = self.freqai_info['model_reward_parameters']
|
||||
|
||||
|
||||
model_name = 'ppo'
|
||||
# train_env = DEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
# #eval_env = DEnv(df=test_df, prices=price_test, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
|
||||
#env_instance = GymAnytrading(train_df, price, self.CONV_WIDTH)
|
||||
# #env_instance = SubprocVecEnv([DEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)])
|
||||
# #train_env.reset()
|
||||
# #eval_env.reset()
|
||||
|
||||
# # model
|
||||
|
||||
# #policy_kwargs = dict(net_arch=[512, 512, 512])
|
||||
# policy_kwargs = dict(activation_fn=th.nn.Tanh,
|
||||
# net_arch=[256, 256, 256])
|
||||
# agent = RLPrediction_agent(train_env)
|
||||
# #eval_agent = RLPrediction_agent(eval_env)
|
||||
|
||||
# # PPO
|
||||
# model_name = 'ppo'
|
||||
# model = agent.get_model(model_name, model_kwargs=agent_params, policy_kwargs=policy_kwargs)
|
||||
# trained_model = agent.train_model(model=model,
|
||||
# tb_log_name=model_name,
|
||||
# model_kwargs=agent_params,
|
||||
# train_df=train_df,
|
||||
# test_df=test_df,
|
||||
# price=price,
|
||||
# price_test=price_test,
|
||||
# window_size=self.CONV_WIDTH)
|
||||
|
||||
|
||||
# # best_model = eval_agent.train_model(model=model,
|
||||
# # tb_log_name=model_name,
|
||||
# # model_kwargs=agent_params,
|
||||
# # eval=eval_env)
|
||||
|
||||
|
||||
# # TDQN
|
||||
# # model_name = 'TDQN'
|
||||
# # model = TDQN('TMultiInputPolicy', train_env, policy_kwargs=policy_kwargs, tensorboard_log='./tensorboard_log/',
|
||||
# # learning_rate=agent_params["learning_rate"], gamma=0.9,
|
||||
# # target_update_interval=5000, buffer_size=50000,
|
||||
# # exploration_initial_eps=1, exploration_final_eps=0.1,
|
||||
# # replay_buffer_class=ReplayBuffer
|
||||
# # )
|
||||
|
||||
# # trained_model = agent.train_model(model=model,
|
||||
# # tb_log_name=model_name,
|
||||
# # model_kwargs=agent_params)
|
||||
# #model.learn(
|
||||
# # total_timesteps=5000,
|
||||
# # callback=callback
|
||||
# # )
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
|
||||
env_instance = DEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
agent = RLPrediction_agent(env_instance)
|
||||
# price data for model training and evaluation
|
||||
price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index))
|
||||
price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(test_df.index))
|
||||
|
||||
# checkpoint_callback = CheckpointCallback(save_freq=1000, save_path='./logs/')
|
||||
# eval_callback = EvalCallback(test_df, best_model_save_path='./models/',
|
||||
# log_path='./logs/', eval_freq=10000,
|
||||
# deterministic=True, render=False)
|
||||
# environments
|
||||
train_env = DEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
eval = DEnv(df=test_df, prices=price_test, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
eval_env = Monitor(eval, ".")
|
||||
eval_env.reset()
|
||||
|
||||
# #Create the callback list
|
||||
# callback = CallbackList([checkpoint_callback, eval_callback])
|
||||
# this should be in config - TODO
|
||||
agent_type = 'tdqn'
|
||||
|
||||
model = agent.get_model(model_name, model_kwargs=agent_params)
|
||||
trained_model = agent.train_model(model=model,
|
||||
tb_log_name=model_name,
|
||||
model_kwargs=agent_params)
|
||||
#eval_callback=callback)
|
||||
path = self.dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/{agent_type}/logs/", eval_freq=10000,
|
||||
deterministic=True, render=False)
|
||||
|
||||
|
||||
# model arch
|
||||
policy_kwargs = dict(activation_fn=th.nn.Tanh,
|
||||
net_arch=[512, 512, 512])
|
||||
|
||||
|
||||
if agent_type == 'tdqn':
|
||||
model = TDQN('TMultiInputPolicy', train_env, policy_kwargs=policy_kwargs, tensorboard_log=f"{path}/{agent_type}/tensorboard/",
|
||||
learning_rate=0.00025, gamma=0.9,
|
||||
target_update_interval=5000, buffer_size=50000,
|
||||
exploration_initial_eps=1, exploration_final_eps=0.1,
|
||||
replay_buffer_class=ReplayBuffer
|
||||
)
|
||||
elif agent_type == 'ppo':
|
||||
model = PPO('MultiInputPolicy', train_env, policy_kwargs=policy_kwargs, tensorboard_log=f"{path}/{agent_type}/tensorboard/",
|
||||
learning_rate=0.00025, gamma=0.9
|
||||
)
|
||||
|
||||
model.learn(
|
||||
total_timesteps=agent_params["total_timesteps"],
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
print('Training finished!')
|
||||
|
||||
return trained_model
|
||||
return model
|
||||
|
||||
|
||||
|
||||
def get_state_info(self, pair):
|
||||
open_trades = Trade.get_trades(trade_filter=Trade.is_open.is_(True))
|
||||
|
Loading…
Reference in New Issue
Block a user