edits to clarify backtesting analysis
This commit is contained in:
parent
2bc67b4a96
commit
ccf3c69874
@ -2,11 +2,33 @@
|
||||
|
||||
You can analyze the results of backtests and trading history easily using Jupyter notebooks. A sample notebook is located at `user_data/notebooks/analysis_example.ipynb`. For usage instructions, see [jupyter.org](https://jupyter.org/documentation).
|
||||
|
||||
## Example snippets
|
||||
|
||||
### Load backtest results into a pandas dataframe
|
||||
|
||||
```python
|
||||
# Load backtest results
|
||||
df = load_backtest_data("user_data/backtest_data/backtest-result.json")
|
||||
|
||||
# Show value-counts per pair
|
||||
df.groupby("pair")["sell_reason"].value_counts()
|
||||
```
|
||||
|
||||
### Load live trading results into a pandas dataframe
|
||||
|
||||
``` python
|
||||
# Fetch trades from database
|
||||
df = load_trades_from_db("sqlite:///tradesv3.sqlite")
|
||||
|
||||
# Display results
|
||||
df.groupby("pair")["sell_reason"].value_counts()
|
||||
```
|
||||
|
||||
## Strategy debugging example
|
||||
|
||||
Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data.
|
||||
|
||||
### Import requirements and define variables used in the script
|
||||
### Import requirements and define variables used in analyses
|
||||
|
||||
```python
|
||||
# Imports
|
||||
@ -47,12 +69,6 @@ print("Loaded " + str(len(bt_data)) + f" rows of data for {pair} from {data_loca
|
||||
### Load and run strategy
|
||||
|
||||
* Rerun each time the strategy file is changed
|
||||
* Display the trade details. Note that using `data.head()` would also work, however most indicators have some "startup" data at the top of the dataframe.
|
||||
|
||||
Some possible problems:
|
||||
|
||||
* Columns with NaN values at the end of the dataframe
|
||||
* Columns used in `crossed*()` functions with completely different units
|
||||
|
||||
```python
|
||||
# Load strategy using values set above
|
||||
@ -60,33 +76,31 @@ strategy = StrategyResolver({'strategy': strategy_name,
|
||||
'user_data_dir': user_data_dir,
|
||||
'strategy_path': strategy_location}).strategy
|
||||
|
||||
# Run strategy (just like in backtesting)
|
||||
# Generate buy/sell signals using strategy
|
||||
df = strategy.analyze_ticker(bt_data, {'pair': pair})
|
||||
```
|
||||
|
||||
### Display the trade details
|
||||
|
||||
* Note that using `data.head()` would also work, however most indicators have some "startup" data at the top of the dataframe.
|
||||
|
||||
#### Some possible problems
|
||||
|
||||
* Columns with NaN values at the end of the dataframe
|
||||
* Columns used in `crossed*()` functions with completely different units
|
||||
|
||||
#### Comparison with full backtest
|
||||
|
||||
having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.
|
||||
|
||||
Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple "buy" signals for each pair in sequence (until rsi returns > 29).
|
||||
The bot will only buy on the first of these signals (and also only if a trade-slot ("max_open_trades") is still available), or on one of the middle signals, as soon as a "slot" becomes available.
|
||||
|
||||
```python
|
||||
# Report results
|
||||
print(f"Generated {df['buy'].sum()} buy signals")
|
||||
data = df.set_index('date', drop=True)
|
||||
data.tail()
|
||||
```
|
||||
|
||||
### Load backtest results into a pandas dataframe
|
||||
|
||||
```python
|
||||
# Load backtest results
|
||||
df = load_backtest_data("user_data/backtest_data/backtest-result.json")
|
||||
|
||||
# Show value-counts per pair
|
||||
df.groupby("pair")["sell_reason"].value_counts()
|
||||
```
|
||||
|
||||
### Load live trading results into a pandas dataframe
|
||||
|
||||
``` python
|
||||
# Fetch trades from database
|
||||
df = load_trades_from_db("sqlite:///tradesv3.sqlite")
|
||||
|
||||
# Display results
|
||||
df.groupby("pair")["sell_reason"].value_counts()
|
||||
```
|
||||
|
||||
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
|
||||
|
12
setup.py
12
setup.py
@ -25,7 +25,15 @@ develop = [
|
||||
'pytest-random-order',
|
||||
]
|
||||
|
||||
all_extra = api + plot + develop
|
||||
jupyter = [
|
||||
'jupyter',
|
||||
'nbstripout',
|
||||
'ipykernel',
|
||||
'isort',
|
||||
'yapf',
|
||||
]
|
||||
|
||||
all_extra = api + plot + develop + jupyter
|
||||
|
||||
setup(name='freqtrade',
|
||||
version=__version__,
|
||||
@ -68,7 +76,7 @@ setup(name='freqtrade',
|
||||
'dev': all_extra,
|
||||
'plot': plot,
|
||||
'all': all_extra,
|
||||
'jupyter': [],
|
||||
'jupyter': jupyter,
|
||||
|
||||
},
|
||||
include_package_data=True,
|
||||
|
@ -4,31 +4,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Strategy debugging example"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Change directory\n",
|
||||
"# Define all paths relative to the project root shown in the cell output\n",
|
||||
"import os\n",
|
||||
"from pathlib import Path\n",
|
||||
"try:\n",
|
||||
"\tos.chdir(Path(os.getcwd(), '../..'))\n",
|
||||
"\tprint(os.getcwd())\n",
|
||||
"except:\n",
|
||||
"\tpass"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Import requirements and define variables used in the script"
|
||||
"# Analyzing bot data\n",
|
||||
"\n",
|
||||
"You can analyze the results of backtests and trading history easily using Jupyter notebooks. A sample notebook is located at `user_data/notebooks/analysis_example.ipynb`. For usage instructions, see [jupyter.org](https://jupyter.org/documentation)."
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -39,11 +17,97 @@
|
||||
"source": [
|
||||
"# Imports\n",
|
||||
"from pathlib import Path\n",
|
||||
"import os\n",
|
||||
"from freqtrade.data.history import load_pair_history\n",
|
||||
"from freqtrade.resolvers import StrategyResolver\n",
|
||||
"from freqtrade.data.btanalysis import load_backtest_data\n",
|
||||
"from freqtrade.data.btanalysis import load_trades_from_db\n",
|
||||
"from freqtrade.data.btanalysis import load_trades_from_db"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Change directory\n",
|
||||
"# Define all paths relative to the project root shown in the cell output\n",
|
||||
"try:\n",
|
||||
"\tos.chdir(Path(Path.cwd(), '../..'))\n",
|
||||
"\tprint(Path.cwd())\n",
|
||||
"except:\n",
|
||||
"\tpass"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example snippets"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load backtest results into a pandas dataframe"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load backtest results\n",
|
||||
"df = load_backtest_data(\"user_data/backtest_data/backtest-result.json\")\n",
|
||||
"\n",
|
||||
"# Show value-counts per pair\n",
|
||||
"df.groupby(\"pair\")[\"sell_reason\"].value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load live trading results into a pandas dataframe"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Fetch trades from database\n",
|
||||
"df = load_trades_from_db(\"sqlite:///tradesv3.sqlite\")\n",
|
||||
"\n",
|
||||
"# Display results\n",
|
||||
"df.groupby(\"pair\")[\"sell_reason\"].value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Strategy debugging example\n",
|
||||
"\n",
|
||||
"Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Import requirements and define variables used in analyses"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define some constants\n",
|
||||
"ticker_interval = \"1m\"\n",
|
||||
"# Name of the strategy class\n",
|
||||
@ -51,9 +115,9 @@
|
||||
"# Path to user data\n",
|
||||
"user_data_dir = 'user_data'\n",
|
||||
"# Location of the strategy\n",
|
||||
"strategy_location = Path(user_data_dir, 'strategies')\n",
|
||||
"strategy_location = os.path.join(user_data_dir, 'strategies')\n",
|
||||
"# Location of the data\n",
|
||||
"data_location = Path(user_data_dir, 'data', 'binance')\n",
|
||||
"data_location = os.path.join(user_data_dir, 'data', 'binance')\n",
|
||||
"# Pair to analyze \n",
|
||||
"# Only use one pair here\n",
|
||||
"pair = \"BTC_USDT\""
|
||||
@ -86,14 +150,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load and run strategy\n",
|
||||
"\n",
|
||||
"* Rerun each time the strategy file is changed\n",
|
||||
"* Display the trade details. Note that using `data.head()` would also work, however most indicators have some \"startup\" data at the top of the dataframe.\n",
|
||||
"\n",
|
||||
"Some possible problems:\n",
|
||||
"\n",
|
||||
"* Columns with NaN values at the end of the dataframe\n",
|
||||
"* Columns used in `crossed*()` functions with completely different units"
|
||||
"* Rerun each time the strategy file is changed"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -107,53 +164,49 @@
|
||||
" 'user_data_dir': user_data_dir,\n",
|
||||
" 'strategy_path': strategy_location}).strategy\n",
|
||||
"\n",
|
||||
"# Run strategy (just like in backtesting)\n",
|
||||
"df = strategy.analyze_ticker(bt_data, {'pair': pair})\n",
|
||||
"# Generate buy/sell signals using strategy\n",
|
||||
"df = strategy.analyze_ticker(bt_data, {'pair': pair})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Display the trade details\n",
|
||||
"* Note that using `data.head()` would also work, however most indicators have some \"startup\" data at the top of the dataframe.\n",
|
||||
"\n",
|
||||
"#### Some possible problems\n",
|
||||
"\n",
|
||||
"* Columns with NaN values at the end of the dataframe\n",
|
||||
"* Columns used in `crossed*()` functions with completely different units\n",
|
||||
"\n",
|
||||
"#### Comparison with full backtest\n",
|
||||
"\n",
|
||||
"having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.\n",
|
||||
"\n",
|
||||
"Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple \"buy\" signals for each pair in sequence (until rsi returns > 29).\n",
|
||||
"The bot will only buy on the first of these signals (and also only if a trade-slot (\"max_open_trades\") is still available), or on one of the middle signals, as soon as a \"slot\" becomes available.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Report results\n",
|
||||
"print(f\"Generated {df['buy'].sum()} buy signals\")\n",
|
||||
"data = df.set_index('date', drop=True)\n",
|
||||
"data.tail()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load backtest results into a pandas dataframe"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load backtest results\n",
|
||||
"df = load_backtest_data(\"user_data/backtest_data/backtest-result.json\")\n",
|
||||
"\n",
|
||||
"# Show value-counts per pair\n",
|
||||
"df.groupby(\"pair\")[\"sell_reason\"].value_counts()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load live trading results into a pandas dataframe"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Fetch trades from database\n",
|
||||
"df = load_trades_from_db(\"sqlite:///tradesv3.sqlite\")\n",
|
||||
"\n",
|
||||
"# Display results\n",
|
||||
"df.groupby(\"pair\")[\"sell_reason\"].value_counts()"
|
||||
"Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data."
|
||||
]
|
||||
}
|
||||
],
|
||||
|
Loading…
Reference in New Issue
Block a user