remove follow mode in favor of producer consumer
This commit is contained in:
parent
1d6738778b
commit
ccb4efbe88
@ -59,7 +59,7 @@ class FreqaiDataDrawer:
|
||||
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
|
||||
"""
|
||||
|
||||
def __init__(self, full_path: Path, config: Config, follow_mode: bool = False):
|
||||
def __init__(self, full_path: Path, config: Config):
|
||||
|
||||
self.config = config
|
||||
self.freqai_info = config.get("freqai", {})
|
||||
@ -84,9 +84,6 @@ class FreqaiDataDrawer:
|
||||
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
|
||||
self.global_metadata_path = Path(self.full_path / "global_metadata.json")
|
||||
self.metric_tracker_path = Path(self.full_path / "metric_tracker.json")
|
||||
self.follow_mode = follow_mode
|
||||
if follow_mode:
|
||||
self.create_follower_dict()
|
||||
self.load_drawer_from_disk()
|
||||
self.load_historic_predictions_from_disk()
|
||||
self.metric_tracker: Dict[str, Dict[str, Dict[str, list]]] = {}
|
||||
@ -149,13 +146,8 @@ class FreqaiDataDrawer:
|
||||
if exists:
|
||||
with open(self.pair_dictionary_path, "r") as fp:
|
||||
self.pair_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
|
||||
elif not self.follow_mode:
|
||||
logger.info("Could not find existing datadrawer, starting from scratch")
|
||||
else:
|
||||
logger.warning(
|
||||
f"Follower could not find pair_dictionary at {self.full_path} "
|
||||
"sending null values back to strategy"
|
||||
)
|
||||
logger.info("Could not find existing datadrawer, starting from scratch")
|
||||
|
||||
def load_metric_tracker_from_disk(self):
|
||||
"""
|
||||
@ -193,13 +185,8 @@ class FreqaiDataDrawer:
|
||||
self.historic_predictions = cloudpickle.load(fp)
|
||||
logger.warning('FreqAI successfully loaded the backup historical predictions file.')
|
||||
|
||||
elif not self.follow_mode:
|
||||
logger.info("Could not find existing historic_predictions, starting from scratch")
|
||||
else:
|
||||
logger.warning(
|
||||
f"Follower could not find historic predictions at {self.full_path} "
|
||||
"sending null values back to strategy"
|
||||
)
|
||||
logger.info("Could not find existing historic_predictions, starting from scratch")
|
||||
|
||||
return exists
|
||||
|
||||
@ -248,23 +235,6 @@ class FreqaiDataDrawer:
|
||||
rapidjson.dump(metadata, fp, default=self.np_encoder,
|
||||
number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
def create_follower_dict(self):
|
||||
"""
|
||||
Create or dictionary for each follower to maintain unique persistent prediction targets
|
||||
"""
|
||||
|
||||
whitelist_pairs = self.config.get("exchange", {}).get("pair_whitelist")
|
||||
|
||||
exists = self.follower_dict_path.is_file()
|
||||
|
||||
if exists:
|
||||
logger.info("Found an existing follower dictionary")
|
||||
|
||||
for pair in whitelist_pairs:
|
||||
self.follower_dict[pair] = {}
|
||||
|
||||
self.save_follower_dict_to_disk()
|
||||
|
||||
def np_encoder(self, object):
|
||||
if isinstance(object, np.generic):
|
||||
return object.item()
|
||||
@ -282,27 +252,17 @@ class FreqaiDataDrawer:
|
||||
"""
|
||||
|
||||
pair_dict = self.pair_dict.get(pair)
|
||||
data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "")
|
||||
# data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "")
|
||||
return_null_array = False
|
||||
|
||||
if pair_dict:
|
||||
model_filename = pair_dict["model_filename"]
|
||||
trained_timestamp = pair_dict["trained_timestamp"]
|
||||
elif not self.follow_mode:
|
||||
else:
|
||||
self.pair_dict[pair] = self.empty_pair_dict.copy()
|
||||
model_filename = ""
|
||||
trained_timestamp = 0
|
||||
|
||||
if not data_path_set and self.follow_mode:
|
||||
logger.warning(
|
||||
f"Follower could not find current pair {pair} in "
|
||||
f"pair_dictionary at path {self.full_path}, sending null values "
|
||||
"back to strategy."
|
||||
)
|
||||
trained_timestamp = 0
|
||||
model_filename = ''
|
||||
return_null_array = True
|
||||
|
||||
return model_filename, trained_timestamp, return_null_array
|
||||
|
||||
def set_pair_dict_info(self, metadata: dict) -> None:
|
||||
@ -311,7 +271,6 @@ class FreqaiDataDrawer:
|
||||
return
|
||||
else:
|
||||
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
|
||||
|
||||
return
|
||||
|
||||
def set_initial_return_values(self, pair: str, pred_df: DataFrame) -> None:
|
||||
|
@ -66,12 +66,11 @@ class IFreqaiModel(ABC):
|
||||
self.retrain = False
|
||||
self.first = True
|
||||
self.set_full_path()
|
||||
self.follow_mode: bool = self.freqai_info.get("follow_mode", False)
|
||||
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", True)
|
||||
if self.save_backtest_models:
|
||||
logger.info('Backtesting module configured to save all models.')
|
||||
|
||||
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
|
||||
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config)
|
||||
# set current candle to arbitrary historical date
|
||||
self.current_candle: datetime = datetime.fromtimestamp(637887600, tz=timezone.utc)
|
||||
self.dd.current_candle = self.current_candle
|
||||
@ -153,7 +152,7 @@ class IFreqaiModel(ABC):
|
||||
# (backtest window, i.e. window immediately following the training window).
|
||||
# FreqAI slides the window and sequentially builds the backtesting results before returning
|
||||
# the concatenated results for the full backtesting period back to the strategy.
|
||||
elif not self.follow_mode:
|
||||
else:
|
||||
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
|
||||
if not self.config.get("freqai_backtest_live_models", False):
|
||||
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
|
||||
@ -379,27 +378,16 @@ class IFreqaiModel(ABC):
|
||||
:returns:
|
||||
dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
||||
"""
|
||||
# update follower
|
||||
if self.follow_mode:
|
||||
self.dd.update_follower_metadata()
|
||||
|
||||
# get the model metadata associated with the current pair
|
||||
(_, trained_timestamp, return_null_array) = self.dd.get_pair_dict_info(metadata["pair"])
|
||||
|
||||
# if the metadata doesn't exist, the follower returns null arrays to strategy
|
||||
if self.follow_mode and return_null_array:
|
||||
logger.info("Returning null array from follower to strategy")
|
||||
self.dd.return_null_values_to_strategy(dataframe, dk)
|
||||
return dk
|
||||
|
||||
# append the historic data once per round
|
||||
if self.dd.historic_data:
|
||||
self.dd.update_historic_data(strategy, dk)
|
||||
logger.debug(f'Updating historic data on pair {metadata["pair"]}')
|
||||
self.track_current_candle()
|
||||
|
||||
if not self.follow_mode:
|
||||
|
||||
(_, new_trained_timerange, data_load_timerange) = dk.check_if_new_training_required(
|
||||
trained_timestamp
|
||||
)
|
||||
@ -413,13 +401,6 @@ class IFreqaiModel(ABC):
|
||||
self.scanning = True
|
||||
self.start_scanning(strategy)
|
||||
|
||||
elif self.follow_mode:
|
||||
dk.set_paths(metadata["pair"], trained_timestamp)
|
||||
logger.info(
|
||||
"FreqAI instance set to follow_mode, finding existing pair "
|
||||
f"using { self.identifier }"
|
||||
)
|
||||
|
||||
# load the model and associated data into the data kitchen
|
||||
self.model = self.dd.load_data(metadata["pair"], dk)
|
||||
|
||||
|
@ -376,57 +376,6 @@ def test_backtesting_fit_live_predictions(mocker, freqai_conf, caplog):
|
||||
shutil.rmtree(Path(freqai.dk.full_path))
|
||||
|
||||
|
||||
def test_follow_mode(mocker, freqai_conf):
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||
|
||||
metadata = {"pair": "ADA/BTC"}
|
||||
freqai.dd.set_pair_dict_info(metadata)
|
||||
|
||||
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||
new_timerange = TimeRange.parse_timerange("20180120-20180130")
|
||||
|
||||
freqai.extract_data_and_train_model(
|
||||
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
|
||||
|
||||
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").is_file()
|
||||
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").is_file()
|
||||
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").is_file()
|
||||
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").is_file()
|
||||
|
||||
# start the follower and ask it to predict on existing files
|
||||
|
||||
freqai_conf.get("freqai", {}).update({"follow_mode": "true"})
|
||||
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf, freqai.live)
|
||||
timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||
|
||||
df = strategy.dp.get_pair_dataframe('ADA/BTC', '5m')
|
||||
|
||||
freqai.dk.pair = "ADA/BTC"
|
||||
freqai.start_live(df, metadata, strategy, freqai.dk)
|
||||
|
||||
assert len(freqai.dk.return_dataframe.index) == 5702
|
||||
|
||||
shutil.rmtree(Path(freqai.dk.full_path))
|
||||
|
||||
|
||||
def test_principal_component_analysis(mocker, freqai_conf):
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
freqai_conf.get("freqai", {}).get("feature_parameters", {}).update(
|
||||
|
Loading…
Reference in New Issue
Block a user