Merge pull request #3731 from freqtrade/release_2020.8

Release 2020.8
This commit is contained in:
Matthias 2020-08-31 06:52:49 +02:00 committed by GitHub
commit cb37166086
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
96 changed files with 2735 additions and 1277 deletions

View File

@ -88,7 +88,7 @@ jobs:
run: |
cp config.json.example config.json
freqtrade create-userdir --userdir user_data
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt SampleHyperOpt
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt SampleHyperOpt --print-all
- name: Flake8
run: |
@ -150,7 +150,7 @@ jobs:
run: |
cp config.json.example config.json
freqtrade create-userdir --userdir user_data
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt SampleHyperOpt
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt SampleHyperOpt --print-all
- name: Flake8
run: |

View File

@ -1,7 +1,7 @@
FROM --platform=linux/arm/v7 python:3.7.7-slim-buster
RUN apt-get update \
&& apt-get -y install curl build-essential libssl-dev libatlas3-base libgfortran5 sqlite3 \
&& apt-get -y install curl build-essential libssl-dev libffi-dev libatlas3-base libgfortran5 sqlite3 \
&& apt-get clean \
&& pip install --upgrade pip \
&& echo "[global]\nextra-index-url=https://www.piwheels.org/simple" > /etc/pip.conf

View File

@ -123,7 +123,6 @@ Telegram is not mandatory. However, this is a great way to control your bot. Mor
- `/help`: Show help message
- `/version`: Show version
## Development branches
The project is currently setup in two main branches:

View File

@ -157,17 +157,32 @@ A backtesting result will look like that:
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 | 0 | 0 |
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 | 0 | 0 |
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 | 0 | 0 |
=============== SUMMARY METRICS ===============
| Metric | Value |
|-----------------------+---------------------|
| Backtesting from | 2019-01-01 00:00:00 |
| Backtesting to | 2019-05-01 00:00:00 |
| Total trades | 429 |
| First trade | 2019-01-01 18:30:00 |
| First trade Pair | EOS/USDT |
| Total Profit % | 152.41% |
| Trades per day | 3.575 |
| Best day | 25.27% |
| Worst day | -30.67% |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| | |
| Max Drawdown | 50.63% |
| Drawdown Start | 2019-02-15 14:10:00 |
| Drawdown End | 2019-04-11 18:15:00 |
| Market change | -5.88% |
===============================================
```
### Backtesting report table
The 1st table contains all trades the bot made, including "left open trades".
The 2nd table contains a recap of sell reasons.
This table can tell you which area needs some additional work (i.e. all `sell_signal` trades are losses, so we should disable the sell-signal or work on improving that).
The 3rd table contains all trades the bot had to `forcesell` at the end of the backtest period to present a full picture.
This is necessary to simulate realistic behaviour, since the backtest period has to end at some point, while realistically, you could leave the bot running forever.
These trades are also included in the first table, but are extracted separately for clarity.
The last line will give you the overall performance of your strategy,
here:
@ -196,6 +211,58 @@ On the other hand, if you set a too high `minimal_roi` like `"0": 0.55`
(55%), there is almost no chance that the bot will ever reach this profit.
Hence, keep in mind that your performance is an integral mix of all different elements of the strategy, your configuration, and the crypto-currency pairs you have set up.
### Sell reasons table
The 2nd table contains a recap of sell reasons.
This table can tell you which area needs some additional work (e.g. all or many of the `sell_signal` trades are losses, so you should work on improving the sell signal, or consider disabling it).
### Left open trades table
The 3rd table contains all trades the bot had to `forcesell` at the end of the backtesting period to present you the full picture.
This is necessary to simulate realistic behavior, since the backtest period has to end at some point, while realistically, you could leave the bot running forever.
These trades are also included in the first table, but are also shown separately in this table for clarity.
### Summary metrics
The last element of the backtest report is the summary metrics table.
It contains some useful key metrics about performance of your strategy on backtesting data.
```
=============== SUMMARY METRICS ===============
| Metric | Value |
|-----------------------+---------------------|
| Backtesting from | 2019-01-01 00:00:00 |
| Backtesting to | 2019-05-01 00:00:00 |
| Total trades | 429 |
| First trade | 2019-01-01 18:30:00 |
| First trade Pair | EOS/USDT |
| Total Profit % | 152.41% |
| Trades per day | 3.575 |
| Best day | 25.27% |
| Worst day | -30.67% |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| | |
| Max Drawdown | 50.63% |
| Drawdown Start | 2019-02-15 14:10:00 |
| Drawdown End | 2019-04-11 18:15:00 |
| Market change | -5.88% |
===============================================
```
- `Total trades`: Identical to the total trades of the backtest output table.
- `First trade`: First trade entered.
- `First trade pair`: Which pair was part of the first trade.
- `Backtesting from` / `Backtesting to`: Backtesting range (usually defined with the `--timerange` option).
- `Total Profit %`: Total profit per stake amount. Aligned to the TOTAL column of the first table.
- `Trades per day`: Total trades divided by the backtesting duration in days (this will give you information about how many trades to expect from the strategy).
- `Best day` / `Worst day`: Best and worst day based on daily profit.
- `Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades.
- `Max Drawdown`: Maximum drawdown experienced. For example, the value of 50% means that from highest to subsequent lowest point, a 50% drop was experienced).
- `Drawdown Start` / `Drawdown End`: Start and end datetimes for this largest drawdown (can also be visualized via the `plot-dataframe` sub-command).
- `Market change`: Change of the market during the backtest period. Calculated as average of all pairs changes from the first to the last candle using the "close" column.
### Assumptions made by backtesting
Since backtesting lacks some detailed information about what happens within a candle, it needs to take a few assumptions:

View File

@ -55,9 +55,9 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `process_only_new_candles` | Enable processing of indicators only when new candles arrive. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `minimal_roi` | **Required.** Set the threshold as ratio the bot will use to sell a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `stoploss` | **Required.** Value as ratio of the stoploss used by the bot. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float (as ratio)
| `trailing_stop` | Enables trailing stoploss (based on `stoploss` in either configuration or strategy file). More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Boolean
| `trailing_stop_positive` | Changes stoploss once profit has been reached. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
| `trailing_stop` | Enables trailing stoploss (based on `stoploss` in either configuration or strategy file). More details in the [stoploss documentation](stoploss.md#trailing-stop-loss). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Boolean
| `trailing_stop_positive` | Changes stoploss once profit has been reached. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-custom-positive-loss). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-only-once-the-trade-has-reached-a-certain-offset). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `unfilledtimeout.buy` | **Required.** How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.sell` | **Required.** How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
@ -278,24 +278,13 @@ This allows to buy using limit orders, sell using
limit-orders, and create stoplosses using market orders. It also allows to set the
stoploss "on exchange" which means stoploss order would be placed immediately once
the buy order is fulfilled.
If `stoploss_on_exchange` and `trailing_stop` are both set, then the bot will use `stoploss_on_exchange_interval` to check and update the stoploss on exchange periodically.
`order_types` can be set in the configuration file or in the strategy.
`order_types` set in the configuration file overwrites values set in the strategy as a whole, so you need to configure the whole `order_types` dictionary in one place.
If this is configured, the following 4 values (`buy`, `sell`, `stoploss` and
`stoploss_on_exchange`) need to be present, otherwise the bot will fail to start.
`emergencysell` is an optional value, which defaults to `market` and is used when creating stoploss on exchange orders fails.
The below is the default which is used if this is not configured in either strategy or configuration file.
Not all Exchanges support `stoploss_on_exchange`. If an exchange supports both limit and market stoploss orders, then the value of `stoploss` will be used to determine the stoploss type.
If `stoploss_on_exchange` uses limit orders, the exchange needs 2 prices, the stoploss_price and the Limit price.
`stoploss` defines the stop-price - and limit should be slightly below this.
This defaults to 0.99 / 1% (configurable via `stoploss_on_exchange_limit_ratio`).
Calculation example: we bought the asset at 100$.
Stop-price is 95$, then limit would be `95 * 0.99 = 94.05$` - so the stoploss will happen between 95$ and 94.05$.
For information on (`emergencysell`,`stoploss_on_exchange`,`stoploss_on_exchange_interval`,`stoploss_on_exchange_limit_ratio`) please see stop loss documentation [stop loss on exchange](stoploss.md)
Syntax for Strategy:
@ -663,24 +652,28 @@ Filters low-value coins which would not allow setting stoplosses.
#### PriceFilter
The `PriceFilter` allows filtering of pairs by price. Currently the following price filters are supported:
* `min_price`
* `max_price`
* `low_price_ratio`
The `min_price` setting removes pairs where the price is below the specified price. This is useful if you wish to avoid trading very low-priced pairs.
This option is disabled by default, and will only apply if set to <> 0.
This option is disabled by default, and will only apply if set to > 0.
The `max_price` setting removes pairs where the price is above the specified price. This is useful if you wish to trade only low-priced pairs.
This option is disabled by default, and will only apply if set to <> 0.
This option is disabled by default, and will only apply if set to > 0.
The `low_price_ratio` setting removes pairs where a raise of 1 price unit (pip) is above the `low_price_ratio` ratio.
This option is disabled by default, and will only apply if set to <> 0.
This option is disabled by default, and will only apply if set to > 0.
For `PriceFiler` at least one of its `min_price`, `max_price` or `low_price_ratio` settings must be applied.
Calculation example:
Min price precision is 8 decimals. If price is 0.00000011 - one step would be 0.00000012 - which is almost 10% higher than the previous value.
Min price precision for SHITCOIN/BTC is 8 decimals. If its price is 0.00000011 - one price step above would be 0.00000012, which is ~9% higher than the previous price value. You may filter out this pair by using PriceFilter with `low_price_ratio` set to 0.09 (9%) or with `min_price` set to 0.00000011, correspondingly.
These pairs are dangerous since it may be impossible to place the desired stoploss - and often result in high losses.
!!! Warning "Low priced pairs"
Low priced pairs with high "1 pip movements" are dangerous since they are often illiquid and it may also be impossible to place the desired stoploss, which can often result in high losses since price needs to be rounded to the next tradable price - so instead of having a stoploss of -5%, you could end up with a stoploss of -9% simply due to price rounding.
#### ShuffleFilter

View File

@ -9,21 +9,20 @@ and are no longer supported. Please avoid their usage in your configuration.
### the `--refresh-pairs-cached` command line option
`--refresh-pairs-cached` in the context of backtesting, hyperopt and edge allows to refresh candle data for backtesting.
Since this leads to much confusion, and slows down backtesting (while not being part of backtesting) this has been singled out
as a seperate freqtrade subcommand `freqtrade download-data`.
Since this leads to much confusion, and slows down backtesting (while not being part of backtesting) this has been singled out as a separate freqtrade sub-command `freqtrade download-data`.
This command line option was deprecated in 2019.7-dev (develop branch) and removed in 2019.9 (master branch).
This command line option was deprecated in 2019.7-dev (develop branch) and removed in 2019.9.
### The **--dynamic-whitelist** command line option
This command line option was deprecated in 2018 and removed freqtrade 2019.6-dev (develop branch)
and in freqtrade 2019.7 (master branch).
and in freqtrade 2019.7.
### the `--live` command line option
`--live` in the context of backtesting allowed to download the latest tick data for backtesting.
Did only download the latest 500 candles, so was ineffective in getting good backtest data.
Removed in 2019-7-dev (develop branch) and in freqtrade 2019-8 (master branch)
Removed in 2019-7-dev (develop branch) and in freqtrade 2019.8.
### Allow running multiple pairlists in sequence
@ -31,6 +30,6 @@ The former `"pairlist"` section in the configuration has been removed, and is re
The old section of configuration parameters (`"pairlist"`) has been deprecated in 2019.11 and has been removed in 2020.4.
### deprecation of bidVolume and askVolume from volumepairlist
### deprecation of bidVolume and askVolume from volume-pairlist
Since only quoteVolume can be compared between assets, the other options (bidVolume, askVolume) have been deprecated in 2020.4.

View File

@ -85,6 +85,35 @@ docker-compose exec freqtrade_develop /bin/bash
![image](https://user-images.githubusercontent.com/419355/65456522-ba671a80-de06-11e9-9598-df9ca0d8dcac.png)
## ErrorHandling
Freqtrade Exceptions all inherit from `FreqtradeException`.
This general class of error should however not be used directly. Instead, multiple specialized sub-Exceptions exist.
Below is an outline of exception inheritance hierarchy:
```
+ FreqtradeException
|
+---+ OperationalException
|
+---+ DependencyException
| |
| +---+ PricingError
| |
| +---+ ExchangeError
| |
| +---+ TemporaryError
| |
| +---+ DDosProtection
| |
| +---+ InvalidOrderException
| |
| +---+ RetryableOrderError
|
+---+ StrategyError
```
## Modules
### Dynamic Pairlist

View File

@ -6,7 +6,8 @@ This page explains how to use Edge Positioning module in your bot in order to en
Edge positioning is not compatible with dynamic (volume-based) whitelist.
!!! Note
Edge does not consider anything else than buy/sell/stoploss signals. So trailing stoploss, ROI, and everything else are ignored in its calculation.
Edge does not consider anything other than *its own* buy/sell/stoploss signals. It ignores the stoploss, trailing stoploss, and ROI settings in the strategy configuration file.
Therefore, it is important to understand that Edge can improve the performance of some trading strategies but *decrease* the performance of others.
## Introduction
@ -89,7 +90,7 @@ You can also use this value to evaluate the effectiveness of modifications to th
## How does it work?
If enabled in config, Edge will go through historical data with a range of stoplosses in order to find buy and sell/stoploss signals. It then calculates win rate and expectancy over *N* trades for each stoploss. Here is an example:
Edge combines dynamic stoploss, dynamic positions, and whitelist generation into one isolated module which is then applied to the trading strategy. If enabled in config, Edge will go through historical data with a range of stoplosses in order to find buy and sell/stoploss signals. It then calculates win rate and expectancy over *N* trades for each stoploss. Here is an example:
| Pair | Stoploss | Win Rate | Risk Reward Ratio | Expectancy |
|----------|:-------------:|-------------:|------------------:|-----------:|
@ -186,6 +187,12 @@ An example of its output:
| APPC/BTC | -0.02 | 0.44 | 2.28 | 1.27 | 0.44 | 25 | 43 |
| NEBL/BTC | -0.03 | 0.63 | 1.29 | 0.58 | 0.44 | 19 | 59 |
Edge produced the above table by comparing `calculate_since_number_of_days` to `minimum_expectancy` to find `min_trade_number` historical information based on the config file. The timerange Edge uses for its comparisons can be further limited by using the `--timerange` switch.
In live and dry-run modes, after the `process_throttle_secs` has passed, Edge will again process `calculate_since_number_of_days` against `minimum_expectancy` to find `min_trade_number`. If no `min_trade_number` is found, the bot will return "whitelist empty". Depending on the trade strategy being deployed, "whitelist empty" may be return much of the time - or *all* of the time. The use of Edge may also cause trading to occur in bursts, though this is rare.
If you encounter "whitelist empty" a lot, condsider tuning `calculate_since_number_of_days`, `minimum_expectancy` and `min_trade_number` to align to the trading frequency of your strategy.
### Update cached pairs with the latest data
Edge requires historic data the same way as backtesting does.

View File

@ -1,5 +1,9 @@
# Freqtrade FAQ
## Beginner Tips & Tricks
* When you work with your strategy & hyperopt file you should use a proper code editor like vscode or Pycharm. A good code editor will provide syntax highlighting as well as line numbers, making it easy to find syntax errors (most likely, pointed out by Freqtrade during startup).
## Freqtrade common issues
### The bot does not start
@ -15,10 +19,12 @@ This could have the following reasons:
### I have waited 5 minutes, why hasn't the bot made any trades yet?!
Depending on the buy strategy, the amount of whitelisted coins, the
* Depending on the buy strategy, the amount of whitelisted coins, the
situation of the market etc, it can take up to hours to find good entry
position for a trade. Be patient!
* Or it may because of a configuration error? Best check the logs, it's usually telling you if the bot is simply not getting buy signals (only heartbeat messages), or if there is something wrong (errors / exceptions in the log).
### I have made 12 trades already, why is my total profit negative?!
I understand your disappointment but unfortunately 12 trades is just
@ -129,25 +135,27 @@ to find a great result (unless if you are very lucky), so you probably
have to run it for 10.000 or more. But it will take an eternity to
compute.
We recommend you to run it at least 10.000 epochs:
Since hyperopt uses Bayesian search, running for too many epochs may not produce greater results.
It's therefore recommended to run between 500-1000 epochs over and over until you hit at least 10.000 epocs in total (or are satisfied with the result). You can best judge by looking at the results - if the bot keeps discovering better strategies, it's best to keep on going.
```bash
freqtrade hyperopt -e 10000
freqtrade hyperopt -e 1000
```
or if you want intermediate result to see
```bash
for i in {1..100}; do freqtrade hyperopt -e 100; done
for i in {1..100}; do freqtrade hyperopt -e 1000; done
```
### Why it is so long to run hyperopt?
### Why does it take a long time to run hyperopt?
Finding a great Hyperopt results takes time.
* Discovering a great strategy with Hyperopt takes time. Study www.freqtrade.io, the Freqtrade Documentation page, join the Freqtrade [Slack community](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LTU1MTgxMjkzNmYxNWE1MDEzYzQ3YmU4N2MwZjUyNjJjODRkMDVkNjg4YTAyZGYzYzlhOTZiMTE4ZjQ4YzM0OGE) - or the Freqtrade [discord community](https://discord.gg/X89cVG). While you patiently wait for the most advanced, free crypto bot in the world, to hand you a possible golden strategy specially designed just for you.
If you wonder why it takes a while to find great hyperopt results
* If you wonder why it can take from 20 minutes to days to do 1000 epocs here are some answers:
This answer was written during the under the release 0.15.1, when we had:
This answer was written during the release 0.15.1, when we had:
- 8 triggers
- 9 guards: let's say we evaluate even 10 values from each
@ -157,7 +165,14 @@ The following calculation is still very rough and not very precise
but it will give the idea. With only these triggers and guards there is
already 8\*10^9\*10 evaluations. A roughly total of 80 billion evals.
Did you run 100 000 evals? Congrats, you've done roughly 1 / 100 000 th
of the search space.
of the search space, assuming that the bot never tests the same parameters more than once.
* The time it takes to run 1000 hyperopt epocs depends on things like: The available cpu, harddisk, ram, timeframe, timerange, indicator settings, indicator count, amount of coins that hyperopt test strategies on and the resulting trade count - which can be 650 trades in a year or 10.0000 trades depending if the strategy aims for big profits by trading rarely or for many low profit trades.
Example: 4% profit 650 times vs 0,3% profit a trade 10.000 times in a year. If we assume you set the --timerange to 365 days.
Example:
`freqtrade --config config.json --strategy SampleStrategy --hyperopt SampleHyperopt -e 1000 --timerange 20190601-20200601`
## Edge module

View File

@ -370,6 +370,9 @@ By default, hyperopt prints colorized results -- epochs with positive profit are
You can use the `--print-all` command line option if you would like to see all results in the hyperopt output, not only the best ones. When `--print-all` is used, current best results are also colorized by default -- they are printed in bold (bright) style. This can also be switched off with the `--no-color` command line option.
!!! Note "Windows and color output"
Windows does not support color-output nativly, therefore it is automatically disabled. To have color-output for hyperopt running under windows, please consider using WSL.
### Understand Hyperopt ROI results
If you are optimizing ROI (i.e. if optimization search-space contains 'all', 'default' or 'roi'), your result will look as follows and include a ROI table:

View File

@ -224,7 +224,8 @@ Possible options for the `freqtrade plot-profit` subcommand:
```
usage: freqtrade plot-profit [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [-p PAIRS [PAIRS ...]]
[-d PATH] [--userdir PATH] [-s NAME]
[--strategy-path PATH] [-p PAIRS [PAIRS ...]]
[--timerange TIMERANGE] [--export EXPORT]
[--export-filename PATH] [--db-url PATH]
[--trade-source {DB,file}] [-i TIMEFRAME]
@ -270,6 +271,11 @@ Common arguments:
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
Strategy arguments:
-s NAME, --strategy NAME
Specify strategy class name which will be used by the
bot.
--strategy-path PATH Specify additional strategy lookup path.
```
The `-p/--pairs` argument, can be used to limit the pairs that are considered for this calculation.
@ -279,7 +285,7 @@ Examples:
Use custom backtest-export file
``` bash
freqtrade plot-profit -p LTC/BTC --export-filename user_data/backtest_results/backtest-result-Strategy005.json
freqtrade plot-profit -p LTC/BTC --export-filename user_data/backtest_results/backtest-result.json
```
Use custom database

View File

@ -1,2 +1,2 @@
mkdocs-material==5.5.0
mkdocs-material==5.5.8
mdx_truly_sane_lists==1.2

View File

@ -46,7 +46,7 @@ secrets.token_hex()
### Configuration with docker
If you run your bot using docker, you'll need to have the bot listen to incomming connections. The security is then handled by docker.
If you run your bot using docker, you'll need to have the bot listen to incoming connections. The security is then handled by docker.
``` json
"api_server": {
@ -106,26 +106,30 @@ python3 scripts/rest_client.py --config rest_config.json <command> [optional par
## Available commands
| Command | Default | Description |
|----------|---------|-------------|
| `start` | | Starts the trader
| `stop` | | Stops the trader
| `stopbuy` | | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
| `reload_config` | | Reloads the configuration file
| `show_config` | | Shows part of the current configuration with relevant settings to operation
| `status` | | Lists all open trades
| `count` | | Displays number of trades used and available
| `profit` | | Display a summary of your profit/loss from close trades and some stats about your performance
| `forcesell <trade_id>` | | Instantly sells the given trade (Ignoring `minimum_roi`).
| `forcesell all` | | Instantly sells all open trades (Ignoring `minimum_roi`).
| `forcebuy <pair> [rate]` | | Instantly buys the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
| `performance` | | Show performance of each finished trade grouped by pair
| `balance` | | Show account balance per currency
| `daily <n>` | 7 | Shows profit or loss per day, over the last n days
| `whitelist` | | Show the current whitelist
| `blacklist [pair]` | | Show the current blacklist, or adds a pair to the blacklist.
| `edge` | | Show validated pairs by Edge if it is enabled.
| `version` | | Show version
| Command | Description |
|----------|-------------|
| `ping` | Simple command testing the API Readiness - requires no authentication.
| `start` | Starts the trader
| `stop` | Stops the trader
| `stopbuy` | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
| `reload_config` | Reloads the configuration file
| `trades` | List last trades.
| `delete_trade <trade_id>` | Remove trade from the database. Tries to close open orders. Requires manual handling of this trade on the exchange.
| `show_config` | Shows part of the current configuration with relevant settings to operation
| `logs` | Shows last log messages
| `status` | Lists all open trades
| `count` | Displays number of trades used and available
| `profit` | Display a summary of your profit/loss from close trades and some stats about your performance
| `forcesell <trade_id>` | Instantly sells the given trade (Ignoring `minimum_roi`).
| `forcesell all` | Instantly sells all open trades (Ignoring `minimum_roi`).
| `forcebuy <pair> [rate]` | Instantly buys the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
| `performance` | Show performance of each finished trade grouped by pair
| `balance` | Show account balance per currency
| `daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7)
| `whitelist` | Show the current whitelist
| `blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
| `edge` | Show validated pairs by Edge if it is enabled.
| `version` | Show version
Possible commands can be listed from the rest-client script using the `help` command.
@ -135,78 +139,83 @@ python3 scripts/rest_client.py help
``` output
Possible commands:
balance
Get the account balance
:returns: json object
Get the account balance.
blacklist
Show the current blacklist
Show the current blacklist.
:param add: List of coins to add (example: "BNB/BTC")
:returns: json object
count
Returns the amount of open trades
:returns: json object
Return the amount of open trades.
daily
Returns the amount of open trades
:returns: json object
Return the amount of open trades.
delete_trade
Delete trade from the database.
Tries to close open orders. Requires manual handling of this asset on the exchange.
:param trade_id: Deletes the trade with this ID from the database.
edge
Returns information about edge
:returns: json object
Return information about edge.
forcebuy
Buy an asset
Buy an asset.
:param pair: Pair to buy (ETH/BTC)
:param price: Optional - price to buy
:returns: json object of the trade
forcesell
Force-sell a trade
Force-sell a trade.
:param tradeid: Id of the trade (can be received via status command)
:returns: json object
logs
Show latest logs.
:param limit: Limits log messages to the last <limit> logs. No limit to get all the trades.
performance
Returns the performance of the different coins
:returns: json object
Return the performance of the different coins.
profit
Returns the profit summary
:returns: json object
Return the profit summary.
reload_config
Reload configuration
:returns: json object
Reload configuration.
show_config
Returns part of the configuration, relevant for trading operations.
:return: json object containing the version
start
Start the bot if it's in stopped state.
:returns: json object
Start the bot if it's in the stopped state.
status
Get the status of open trades
:returns: json object
Get the status of open trades.
stop
Stop the bot. Use start to restart
:returns: json object
Stop the bot. Use `start` to restart.
stopbuy
Stop buying (but handle sells gracefully).
use reload_config to reset
:returns: json object
Stop buying (but handle sells gracefully). Use `reload_config` to reset.
trades
Return trades history.
:param limit: Limits trades to the X last trades. No limit to get all the trades.
version
Returns the version of the bot
:returns: json object containing the version
Return the version of the bot.
whitelist
Show the current whitelist
:returns: json object
Show the current whitelist.
```
## Advanced API usage using JWT tokens

View File

@ -1,104 +1,59 @@
# Sandbox API testing
Where an exchange provides a sandbox for risk-free integration, or end-to-end, testing CCXT provides access to these.
Some exchanges provide sandboxes or testbeds for risk-free testing, while running the bot against a real exchange.
With some configuration, freqtrade (in combination with ccxt) provides access to these.
This document is a *light overview of configuring Freqtrade and GDAX sandbox.
This can be useful to developers and trader alike as Freqtrade is quite customisable.
This document is an overview to configure Freqtrade to be used with sandboxes.
This can be useful to developers and trader alike.
When testing your API connectivity, make sure to use the following URLs.
***Website**
https://public.sandbox.gdax.com
***REST API**
https://api-public.sandbox.gdax.com
## Exchanges known to have a sandbox / testnet
* [binance](https://testnet.binance.vision/)
* [coinbasepro](https://public.sandbox.pro.coinbase.com)
* [gemini](https://exchange.sandbox.gemini.com/)
* [huobipro](https://www.testnet.huobi.pro/)
* [kucoin](https://sandbox.kucoin.com/)
* [phemex](https://testnet.phemex.com/)
!!! Note
We did not test correct functioning of all of the above testnets. Please report your experiences with each sandbox.
---
# Configure a Sandbox account on Gdax
## Configure a Sandbox account
Aim of this document section
When testing your API connectivity, make sure to use the appropriate sandbox / testnet URL.
- An sanbox account
- create 2FA (needed to create an API)
- Add test 50BTC to account
- Create :
- - API-KEY
- - API-Secret
- - API Password
In general, you should follow these steps to enable an exchange's sandbox:
## Acccount
* Figure out if an exchange has a sandbox (most likely by using google or the exchange's support documents)
* Create a sandbox account (often the sandbox-account requires separate registration)
* [Add some test assets to account](#add-test-funds)
* Create API keys
This link will redirect to the sandbox main page to login / create account dialogues:
https://public.sandbox.pro.coinbase.com/orders/
### Add test funds
After registration and Email confimation you wil be redirected into your sanbox account. It is easy to verify you're in sandbox by checking the URL bar.
> https://public.sandbox.pro.coinbase.com/
Usually, sandbox exchanges allow depositing funds directly via web-interface.
You should make sure to have a realistic amount of funds available to your test-account, so results are representable of your real account funds.
## Enable 2Fa (a prerequisite to creating sandbox API Keys)
!!! Warning
Test exchanges will **NEVER** require your real credit card or banking details!
From within sand box site select your profile, top right.
>Or as a direct link: https://public.sandbox.pro.coinbase.com/profile
## Configure freqtrade to use a exchange's sandbox
From the menu panel to the left of the screen select
> Security: "*View or Update*"
In the new site select "enable authenticator" as typical google Authenticator.
- open Google Authenticator on your phone
- scan barcode
- enter your generated 2fa
## Enable API Access
From within sandbox select profile>api>create api-keys
>or as a direct link: https://public.sandbox.pro.coinbase.com/profile/api
Click on "create one" and ensure **view** and **trade** are "checked" and sumbit your 2FA
- **Copy and paste the Passphase** into a notepade this will be needed later
- **Copy and paste the API Secret** popup into a notepad this will needed later
- **Copy and paste the API Key** into a notepad this will needed later
## Add 50 BTC test funds
To add funds, use the web interface deposit and withdraw buttons.
To begin select 'Wallets' from the top menu.
> Or as a direct link: https://public.sandbox.pro.coinbase.com/wallets
- Deposits (bottom left of screen)
- - Deposit Funds Bitcoin
- - - Coinbase BTC Wallet
- - - - Max (50 BTC)
- - - - - Deposit
*This process may be repeated for other currencies, ETH as example*
---
# Configure Freqtrade to use Gax Sandbox
The aim of this document section
- Enable sandbox URLs in Freqtrade
- Configure API
- - secret
- - key
- - passphrase
## Sandbox URLs
### Sandbox URLs
Freqtrade makes use of CCXT which in turn provides a list of URLs to Freqtrade.
These include `['test']` and `['api']`.
- `[Test]` if available will point to an Exchanges sandbox.
- `[Api]` normally used, and resolves to live API target on the exchange
* `[Test]` if available will point to an Exchanges sandbox.
* `[Api]` normally used, and resolves to live API target on the exchange.
To make use of sandbox / test add "sandbox": true, to your config.json
```json
"exchange": {
"name": "gdax",
"name": "coinbasepro",
"sandbox": true,
"key": "5wowfxemogxeowo;heiohgmd",
"secret": "/ZMH1P62rCVmwefewrgcewX8nh4gob+lywxfwfxwwfxwfNsH1ySgvWCUR/w==",
@ -106,36 +61,57 @@ To make use of sandbox / test add "sandbox": true, to your config.json
"outdated_offset": 5
"pair_whitelist": [
"BTC/USD"
]
},
"datadir": "user_data/data/coinbasepro_sandbox"
```
Also insert your
Also the following information:
- api-key (noted earlier)
- api-secret (noted earlier)
- password (the passphrase - noted earlier)
* api-key (created for the sandbox webpage)
* api-secret (noted earlier)
* password (the passphrase - noted earlier)
!!! Tip "Different data directory"
We also recommend to set `datadir` to something identifying downloaded data as sandbox data, to avoid having sandbox data mixed with data from the real exchange.
This can be done by adding the `"datadir"` key to the configuration.
Now, whenever you use this configuration, your data directory will be set to this directory.
---
## You should now be ready to test your sandbox
Ensure Freqtrade logs show the sandbox URL, and trades made are shown in sandbox.
** Typically the BTC/USD has the most activity in sandbox to test against.
Ensure Freqtrade logs show the sandbox URL, and trades made are shown in sandbox. Also make sure to select a pair which shows at least some decent value (which very often is BTC/<somestablecoin>).
## GDAX - Old Candles problem
## Common problems with sandbox exchanges
It is my experience that GDAX sandbox candles may be 20+- minutes out of date. This can cause trades to fail as one of Freqtrades safety checks.
Sandbox exchange instances often have very low volume, which can cause some problems which usually are not seen on a real exchange instance.
To disable this check, add / change the `"outdated_offset"` parameter in the exchange section of your configuration to adjust for this delay.
Example based on the above configuration:
### Old Candles problem
```json
"exchange": {
"name": "gdax",
"sandbox": true,
"key": "5wowfxemogxeowo;heiohgmd",
"secret": "/ZMH1P62rCVmwefewrgcewX8nh4gob+lywxfwfxwwfxwfNsH1ySgvWCUR/w==",
"password": "1bkjfkhfhfu6sr",
"outdated_offset": 30
"pair_whitelist": [
"BTC/USD"
```
Since Sandboxes often have low volume, candles can be quite old and show no volume.
To disable the error "Outdated history for pair ...", best increase the parameter `"outdated_offset"` to a number that seems realistic for the sandbox you're using.
### Unfilled orders
Sandboxes often have very low volumes - which means that many trades can go unfilled, or can go unfilled for a very long time.
To mitigate this, you can try to match the first order on the opposite orderbook side using the following configuration:
``` jsonc
"order_types": {
"buy": "limit",
"sell": "limit"
// ...
},
"bid_strategy": {
"price_side": "ask",
// ...
},
"ask_strategy":{
"price_side": "bid",
// ...
},
```
The configuration is similar to the suggested configuration for market orders - however by using limit-orders you can avoid moving the price too much, and you can set the worst price you might get.

View File

@ -110,7 +110,7 @@ SET is_open=0,
close_date=<close_date>,
close_rate=<close_rate>,
close_profit = close_rate / open_rate - 1,
close_profit_abs = (amount * <close_rate> * (1 - fee_close) - (amount * (open_rate * 1 - fee_open))),
close_profit_abs = (amount * <close_rate> * (1 - fee_close) - (amount * (open_rate * (1 - fee_open)))),
sell_reason=<sell_reason>
WHERE id=<trade_ID_to_update>;
```
@ -123,7 +123,7 @@ SET is_open=0,
close_date='2020-06-20 03:08:45.103418',
close_rate=0.19638016,
close_profit=0.0496,
close_profit_abs = (amount * 0.19638016 * (1 - fee_close) - (amount * open_rate * (1 - fee_open))),
close_profit_abs = (amount * 0.19638016 * (1 - fee_close) - (amount * (open_rate * (1 - fee_open)))),
sell_reason='force_sell'
WHERE id=31;
```

View File

@ -6,7 +6,63 @@ For example, value `-0.10` will cause immediate sell if the profit dips below -1
Most of the strategy files already include the optimal `stoploss` value.
!!! Info
All stoploss properties mentioned in this file can be set in the Strategy, or in the configuration. Configuration values will override the strategy values.
All stoploss properties mentioned in this file can be set in the Strategy, or in the configuration.
<ins>Configuration values will override the strategy values.</ins>
## Stop Loss On-Exchange/Freqtrade
Those stoploss modes can be *on exchange* or *off exchange*.
These modes can be configured with these values:
``` python
'emergencysell': 'market',
'stoploss_on_exchange': False
'stoploss_on_exchange_interval': 60,
'stoploss_on_exchange_limit_ratio': 0.99
```
!!! Note
Stoploss on exchange is only supported for Binance (stop-loss-limit), Kraken (stop-loss-market) and FTX (stop limit and stop-market) as of now.
<ins>Do not set too low stoploss value if using stop loss on exchange!</ins>
If set to low/tight then you have greater risk of missing fill on the order and stoploss will not work
### stoploss_on_exchange and stoploss_on_exchange_limit_ratio
Enable or Disable stop loss on exchange.
If the stoploss is *on exchange* it means a stoploss limit order is placed on the exchange immediately after buy order happens successfully. This will protect you against sudden crashes in market as the order will be in the queue immediately and if market goes down then the order has more chance of being fulfilled.
If `stoploss_on_exchange` uses limit orders, the exchange needs 2 prices, the stoploss_price and the Limit price.
`stoploss` defines the stop-price where the limit order is placed - and limit should be slightly below this.
If an exchange supports both limit and market stoploss orders, then the value of `stoploss` will be used to determine the stoploss type.
Calculation example: we bought the asset at 100$.
Stop-price is 95$, then limit would be `95 * 0.99 = 94.05$` - so the limit order fill can happen between 95$ and 94.05$.
For example, assuming the stoploss is on exchange, and trailing stoploss is enabled, and the market is going up, then the bot automatically cancels the previous stoploss order and puts a new one with a stop value higher than the previous stoploss order.
### stoploss_on_exchange_interval
In case of stoploss on exchange there is another parameter called `stoploss_on_exchange_interval`. This configures the interval in seconds at which the bot will check the stoploss and update it if necessary.
The bot cannot do these every 5 seconds (at each iteration), otherwise it would get banned by the exchange.
So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
### emergencysell
`emergencysell` is an optional value, which defaults to `market` and is used when creating stop loss on exchange orders fails.
The below is the default which is used if not changed in strategy or configuration file.
Example from strategy file:
``` python
order_types = {
'buy': 'limit',
'sell': 'limit',
'emergencysell': 'market',
'stoploss': 'market',
'stoploss_on_exchange': True,
'stoploss_on_exchange_interval': 60,
'stoploss_on_exchange_limit_ratio': 0.99
}
```
## Stop Loss Types
@ -17,29 +73,29 @@ At this stage the bot contains the following stoploss support modes:
3. Trailing stop loss, custom positive loss.
4. Trailing stop loss only once the trade has reached a certain offset.
Those stoploss modes can be *on exchange* or *off exchange*. If the stoploss is *on exchange* it means a stoploss limit order is placed on the exchange immediately after buy order happens successfully. This will protect you against sudden crashes in market as the order will be in the queue immediately and if market goes down then the order has more chance of being fulfilled.
In case of stoploss on exchange there is another parameter called `stoploss_on_exchange_interval`. This configures the interval in seconds at which the bot will check the stoploss and update it if necessary.
For example, assuming the stoploss is on exchange, and trailing stoploss is enabled, and the market is going up, then the bot automatically cancels the previous stoploss order and puts a new one with a stop value higher than the previous stoploss order.
The bot cannot do this every 5 seconds (at each iteration), otherwise it would get banned by the exchange.
So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
!!! Note
Stoploss on exchange is only supported for Binance (stop-loss-limit), Kraken (stop-loss-market) and FTX (stop limit and stop-market) as of now.
## Static Stop Loss
### Static Stop Loss
This is very simple, you define a stop loss of x (as a ratio of price, i.e. x * 100% of price). This will try to sell the asset once the loss exceeds the defined loss.
## Trailing Stop Loss
Example of stop loss:
``` python
stoploss = -0.10
```
For example, simplified math:
* the bot buys an asset at a price of 100$
* the stop loss is defined at -10%
* the stop loss would get triggered once the asset drops below 90$
### Trailing Stop Loss
The initial value for this is `stoploss`, just as you would define your static Stop loss.
To enable trailing stoploss:
``` python
trailing_stop = True
stoploss = -0.10
trailing_stop = True
```
This will now activate an algorithm, which automatically moves the stop loss up every time the price of your asset increases.
@ -47,35 +103,43 @@ This will now activate an algorithm, which automatically moves the stop loss up
For example, simplified math:
* the bot buys an asset at a price of 100$
* the stop loss is defined at 2%
* the stop loss would get triggered once the asset dropps below 98$
* the stop loss is defined at -10%
* the stop loss would get triggered once the asset drops below 90$
* assuming the asset now increases to 102$
* the stop loss will now be 2% of 102$ or 99.96$
* now the asset drops in value to 101$, the stop loss will still be 99.96$ and would trigger at 99.96$.
* the stop loss will now be -10% of 102$ = 91.8$
* now the asset drops in value to 101$, the stop loss will still be 91.8$ and would trigger at 91.8$.
In summary: The stoploss will be adjusted to be always be 2% of the highest observed price.
In summary: The stoploss will be adjusted to be always be -10% of the highest observed price.
### Custom positive stoploss
### Trailing stop loss, custom positive loss
It is also possible to have a default stop loss, when you are in the red with your buy, but once your profit surpasses a certain percentage, the system will utilize a new stop loss, which can have a different value.
For example your default stop loss is 5%, but once you have 1.1% profit, it will be changed to be only a 1% stop loss, which trails the green candles until it goes below them.
It is also possible to have a default stop loss, when you are in the red with your buy (buy - fee), but once you hit positive result the system will utilize a new stop loss, which can have a different value.
For example, your default stop loss is -10%, but once you have more than 0% profit (example 0.1%) a different trailing stoploss will be used.
Both values require `trailing_stop` to be set to true.
!!! Note
If you want the stoploss to only be changed when you break even of making a profit (what most users want) please refer to next section with [offset enabled](#Trailing-stop-loss-only-once-the-trade-has-reached-a-certain-offset).
Both values require `trailing_stop` to be set to true and `trailing_stop_positive` with a value.
``` python
trailing_stop_positive = 0.01
trailing_stop_positive_offset = 0.011
stoploss = -0.10
trailing_stop = True
trailing_stop_positive = 0.02
```
The 0.01 would translate to a 1% stop loss, once you hit 1.1% profit.
For example, simplified math:
* the bot buys an asset at a price of 100$
* the stop loss is defined at -10%
* the stop loss would get triggered once the asset drops below 90$
* assuming the asset now increases to 102$
* the stop loss will now be -2% of 102$ = 99.96$ (99.96$ stop loss will be locked in and will follow asset price increasements with -2%)
* now the asset drops in value to 101$, the stop loss will still be 99.96$ and would trigger at 99.96$
The 0.02 would translate to a -2% stop loss.
Before this, `stoploss` is used for the trailing stoploss.
Read the [next section](#trailing-only-once-offset-is-reached) to keep stoploss at 5% of the entry point.
!!! Tip
Make sure to have this value (`trailing_stop_positive_offset`) lower than minimal ROI, otherwise minimal ROI will apply first and sell the trade.
### Trailing only once offset is reached
### Trailing stop loss only once the trade has reached a certain offset
It is also possible to use a static stoploss until the offset is reached, and then trail the trade to take profits once the market turns.
@ -87,17 +151,28 @@ This option can be used with or without `trailing_stop_positive`, but uses `trai
trailing_only_offset_is_reached = True
```
Simplified example:
Configuration (offset is buyprice + 3%):
``` python
stoploss = 0.05
stoploss = -0.10
trailing_stop = True
trailing_stop_positive = 0.02
trailing_stop_positive_offset = 0.03
trailing_only_offset_is_reached = True
```
For example, simplified math:
* the bot buys an asset at a price of 100$
* the stop loss is defined at 5%
* the stop loss will remain at 95% until profit reaches +3%
* the stop loss is defined at -10%
* the stop loss would get triggered once the asset drops below 90$
* stoploss will remain at 90$ unless asset increases to or above our configured offset
* assuming the asset now increases to 103$ (where we have the offset configured)
* the stop loss will now be -2% of 103$ = 100.94$
* now the asset drops in value to 101$, the stop loss will still be 100.94$ and would trigger at 100.94$
!!! Tip
Make sure to have this value (`trailing_stop_positive_offset`) lower than minimal ROI, otherwise minimal ROI will apply first and sell the trade.
## Changing stoploss on open trades

View File

@ -199,3 +199,24 @@ class Awesomestrategy(IStrategy):
return True
```
## Derived strategies
The strategies can be derived from other strategies. This avoids duplication of your custom strategy code. You can use this technique to override small parts of your main strategy, leaving the rest untouched:
``` python
class MyAwesomeStrategy(IStrategy):
...
stoploss = 0.13
trailing_stop = False
# All other attributes and methods are here as they
# should be in any custom strategy...
...
class MyAwesomeStrategy2(MyAwesomeStrategy):
# Override something
stoploss = 0.08
trailing_stop = True
```
Both attributes and methods may be overriden, altering behavior of the original strategy in a way you need.

View File

@ -58,12 +58,12 @@ file as reference.**
!!! Note "Strategies and Backtesting"
To avoid problems and unexpected differences between Backtesting and dry/live modes, please be aware
that during backtesting the full time-interval is passed to the `populate_*()` methods at once.
that during backtesting the full time range is passed to the `populate_*()` methods at once.
It is therefore best to use vectorized operations (across the whole dataframe, not loops) and
avoid index referencing (`df.iloc[-1]`), but instead use `df.shift()` to get to the previous candle.
!!! Warning "Warning: Using future data"
Since backtesting passes the full time interval to the `populate_*()` methods, the strategy author
Since backtesting passes the full time range to the `populate_*()` methods, the strategy author
needs to take care to avoid having the strategy utilize data from the future.
Some common patterns for this are listed in the [Common Mistakes](#common-mistakes-when-developing-strategies) section of this document.
@ -251,7 +251,7 @@ minimal_roi = {
While technically not completely disabled, this would sell once the trade reaches 10000% Profit.
To use times based on candle duration (timeframe), the following snippet can be handy.
This will allow you to change the ticket_interval for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)
This will allow you to change the timeframe for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)
``` python
from freqtrade.exchange import timeframe_to_minutes
@ -285,7 +285,7 @@ If your exchange supports it, it's recommended to also set `"stoploss_on_exchang
For more information on order_types please look [here](configuration.md#understand-order_types).
### Timeframe (ticker interval)
### Timeframe (formerly ticker interval)
This is the set of candles the bot should download and use for the analysis.
Common values are `"1m"`, `"5m"`, `"15m"`, `"1h"`, however all values supported by your exchange should work.
@ -328,15 +328,15 @@ class Awesomestrategy(IStrategy):
***
### Additional data (informative_pairs)
## Additional data (informative_pairs)
#### Get data for non-tradeable pairs
### Get data for non-tradeable pairs
Data for additional, informative pairs (reference pairs) can be beneficial for some strategies.
Ohlcv data for these pairs will be downloaded as part of the regular whitelist refresh process and is available via `DataProvider` just as other pairs (see below).
OHLCV data for these pairs will be downloaded as part of the regular whitelist refresh process and is available via `DataProvider` just as other pairs (see below).
These parts will **not** be traded unless they are also specified in the pair whitelist, or have been selected by Dynamic Whitelisting.
The pairs need to be specified as tuples in the format `("pair", "interval")`, with pair as the first and time interval as the second argument.
The pairs need to be specified as tuples in the format `("pair", "timeframe")`, with pair as the first and timeframe as the second argument.
Sample:
@ -347,15 +347,17 @@ def informative_pairs(self):
]
```
A full sample can be found [in the DataProvider section](#complete-data-provider-sample).
!!! Warning
As these pairs will be refreshed as part of the regular whitelist refresh, it's best to keep this list short.
All intervals and all pairs can be specified as long as they are available (and active) on the used exchange.
It is however better to use resampling to longer time-intervals when possible
All timeframes and all pairs can be specified as long as they are available (and active) on the used exchange.
It is however better to use resampling to longer timeframes whenever possible
to avoid hammering the exchange with too many requests and risk being blocked.
***
### Additional data (DataProvider)
## Additional data (DataProvider)
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
@ -363,10 +365,14 @@ All methods return `None` in case of failure (do not raise an exception).
Please always check the mode of operation to select the correct method to get data (samples see below).
#### Possible options for DataProvider
!!! Warning "Hyperopt"
Dataprovider is available during hyperopt, however it can only be used in `populate_indicators()` within a strategy.
It is not available in `populate_buy()` and `populate_sell()` methods, nor in `populate_indicators()`, if this method located in the hyperopt file.
- [`available_pairs`](#available_pairs) - Property with tuples listing cached pairs with their intervals (pair, interval).
- [`current_whitelist()`](#current_whitelist) - Returns a current list of whitelisted pairs. Useful for accessing dynamic whitelists (ie. VolumePairlist)
### Possible options for DataProvider
- [`available_pairs`](#available_pairs) - Property with tuples listing cached pairs with their timeframe (pair, timeframe).
- [`current_whitelist()`](#current_whitelist) - Returns a current list of whitelisted pairs. Useful for accessing dynamic whitelists (i.e. VolumePairlist)
- [`get_pair_dataframe(pair, timeframe)`](#get_pair_dataframepair-timeframe) - This is a universal method, which returns either historical data (for backtesting) or cached live data (for the Dry-Run and Live-Run modes).
- [`get_analyzed_dataframe(pair, timeframe)`](#get_analyzed_dataframepair-timeframe) - Returns the analyzed dataframe (after calling `populate_indicators()`, `populate_buy()`, `populate_sell()`) and the time of the latest analysis.
- `historic_ohlcv(pair, timeframe)` - Returns historical data stored on disk.
@ -376,9 +382,9 @@ Please always check the mode of operation to select the correct method to get da
- [`ticker(pair)`](#tickerpair) - Returns current ticker data for the pair. See [ccxt documentation](https://github.com/ccxt/ccxt/wiki/Manual#price-tickers) for more details on the Ticker data structure.
- `runmode` - Property containing the current runmode.
#### Example Usages:
### Example Usages
#### *available_pairs*
### *available_pairs*
``` python
if self.dp:
@ -386,7 +392,7 @@ if self.dp:
print(f"available {pair}, {timeframe}")
```
#### *current_whitelist()*
### *current_whitelist()*
Imagine you've developed a strategy that trades the `5m` timeframe using signals generated from a `1d` timeframe on the top 10 volume pairs by volume.
@ -400,6 +406,82 @@ Since we can't resample our data we will have to use an informative pair; and si
This is where calling `self.dp.current_whitelist()` comes in handy.
```python
def informative_pairs(self):
# get access to all pairs available in whitelist.
pairs = self.dp.current_whitelist()
# Assign tf to each pair so they can be downloaded and cached for strategy.
informative_pairs = [(pair, '1d') for pair in pairs]
return informative_pairs
```
### *get_pair_dataframe(pair, timeframe)*
``` python
# fetch live / historical candle (OHLCV) data for the first informative pair
if self.dp:
inf_pair, inf_timeframe = self.informative_pairs()[0]
informative = self.dp.get_pair_dataframe(pair=inf_pair,
timeframe=inf_timeframe)
```
!!! Warning "Warning about backtesting"
Be careful when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
for the backtesting runmode) provides the full time-range in one go,
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode.
### *get_analyzed_dataframe(pair, timeframe)*
This method is used by freqtrade internally to determine the last signal.
It can also be used in specific callbacks to get the signal that caused the action (see [Advanced Strategy Documentation](strategy-advanced.md) for more details on available callbacks).
``` python
# fetch current dataframe
if self.dp:
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=metadata['pair'],
timeframe=self.timeframe)
```
!!! Note "No data available"
Returns an empty dataframe if the requested pair was not cached.
This should not happen when using whitelisted pairs.
### *orderbook(pair, maximum)*
``` python
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
```
!!! Warning
The order book is not part of the historic data which means backtesting and hyperopt will not work correctly if this method is used.
### *ticker(pair)*
``` python
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
ticker = self.dp.ticker(metadata['pair'])
dataframe['last_price'] = ticker['last']
dataframe['volume24h'] = ticker['quoteVolume']
dataframe['vwap'] = ticker['vwap']
```
!!! Warning
Although the ticker data structure is a part of the ccxt Unified Interface, the values returned by this method can
vary for different exchanges. For instance, many exchanges do not return `vwap` values, the FTX exchange
does not always fills in the `last` field (so it can be None), etc. So you need to carefully verify the ticker
data returned from the exchange and add appropriate error handling / defaults.
!!! Warning "Warning about backtesting"
This method will always return up-to-date values - so usage during backtesting / hyperopt will lead to wrong results.
### Complete Data-provider sample
```python
class SampleStrategy(IStrategy):
# strategy init stuff...
@ -414,13 +496,20 @@ class SampleStrategy(IStrategy):
pairs = self.dp.current_whitelist()
# Assign tf to each pair so they can be downloaded and cached for strategy.
informative_pairs = [(pair, '1d') for pair in pairs]
# Optionally Add additional "static" pairs
informative_pairs += [("ETH/USDT", "5m"),
("BTC/TUSD", "15m"),
]
return informative_pairs
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
if not self.dp:
# Don't do anything if DataProvider is not available.
return dataframe
inf_tf = '1d'
# Get the informative pair
informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe='1d')
informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=inf_tf)
# Get the 14 day rsi
informative['rsi'] = ta.RSI(informative, timeperiod=14)
@ -435,6 +524,7 @@ class SampleStrategy(IStrategy):
# FFill to have the 1d value available in every row throughout the day.
# Without this, comparisons would only work once per day.
dataframe = dataframe.ffill()
# Calculate rsi of the original dataframe (5m timeframe)
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
@ -455,77 +545,9 @@ class SampleStrategy(IStrategy):
```
#### *get_pair_dataframe(pair, timeframe)*
``` python
# fetch live / historical candle (OHLCV) data for the first informative pair
if self.dp:
inf_pair, inf_timeframe = self.informative_pairs()[0]
informative = self.dp.get_pair_dataframe(pair=inf_pair,
timeframe=inf_timeframe)
```
!!! Warning "Warning about backtesting"
Be careful when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
for the backtesting runmode) provides the full time-range in one go,
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode).
!!! Warning "Warning in hyperopt"
This option cannot currently be used during hyperopt.
#### *get_analyzed_dataframe(pair, timeframe)*
This method is used by freqtrade internally to determine the last signal.
It can also be used in specific callbacks to get the signal that caused the action (see [Advanced Strategy Documentation](strategy-advanced.md) for more details on available callbacks).
``` python
# fetch current dataframe
if self.dp:
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=metadata['pair'],
timeframe=self.ticker_interval)
```
!!! Note "No data available"
Returns an empty dataframe if the requested pair was not cached.
This should not happen when using whitelisted pairs.
!!! Warning "Warning in hyperopt"
This option cannot currently be used during hyperopt.
#### *orderbook(pair, maximum)*
``` python
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
```
!!! Warning
The order book is not part of the historic data which means backtesting and hyperopt will not work if this
method is used.
#### *ticker(pair)*
``` python
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
ticker = self.dp.ticker(metadata['pair'])
dataframe['last_price'] = ticker['last']
dataframe['volume24h'] = ticker['quoteVolume']
dataframe['vwap'] = ticker['vwap']
```
!!! Warning
Although the ticker data structure is a part of the ccxt Unified Interface, the values returned by this method can
vary for different exchanges. For instance, many exchanges do not return `vwap` values, the FTX exchange
does not always fills in the `last` field (so it can be None), etc. So you need to carefully verify the ticker
data returned from the exchange and add appropriate error handling / defaults.
***
### Additional data (Wallets)
## Additional data (Wallets)
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
@ -541,7 +563,7 @@ if self.wallets:
total_eth = self.wallets.get_total('ETH')
```
#### Possible options for Wallets
### Possible options for Wallets
- `get_free(asset)` - currently available balance to trade
- `get_used(asset)` - currently tied up balance (open orders)
@ -549,7 +571,7 @@ if self.wallets:
***
### Additional data (Trades)
## Additional data (Trades)
A history of Trades can be retrieved in the strategy by querying the database.
@ -595,13 +617,13 @@ Sample return value: ETH/BTC had 5 trades, with a total profit of 1.5% (ratio of
!!! Warning
Trade history is not available during backtesting or hyperopt.
### Prevent trades from happening for a specific pair
## Prevent trades from happening for a specific pair
Freqtrade locks pairs automatically for the current candle (until that candle is over) when a pair is sold, preventing an immediate re-buy of that pair.
Locked pairs will show the message `Pair <pair> is currently locked.`.
#### Locking pairs from within the strategy
### Locking pairs from within the strategy
Sometimes it may be desired to lock a pair after certain events happen (e.g. multiple losing trades in a row).
@ -618,7 +640,7 @@ To verify if a pair is currently locked, use `self.is_pair_locked(pair)`.
!!! Warning
Locking pairs is not functioning during backtesting.
##### Pair locking example
#### Pair locking example
``` python
from freqtrade.persistence import Trade
@ -640,7 +662,7 @@ if self.config['runmode'].value in ('live', 'dry_run'):
self.lock_pair(metadata['pair'], until=datetime.now(timezone.utc) + timedelta(hours=12))
```
### Print created dataframe
## Print created dataframe
To inspect the created dataframe, you can issue a print-statement in either `populate_buy_trend()` or `populate_sell_trend()`.
You may also want to print the pair so it's clear what data is currently shown.
@ -664,36 +686,7 @@ def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
Printing more than a few rows is also possible (simply use `print(dataframe)` instead of `print(dataframe.tail())`), however not recommended, as that will be very verbose (~500 lines per pair every 5 seconds).
### Specify custom strategy location
If you want to use a strategy from a different directory you can pass `--strategy-path`
```bash
freqtrade trade --strategy AwesomeStrategy --strategy-path /some/directory
```
### Derived strategies
The strategies can be derived from other strategies. This avoids duplication of your custom strategy code. You can use this technique to override small parts of your main strategy, leaving the rest untouched:
``` python
class MyAwesomeStrategy(IStrategy):
...
stoploss = 0.13
trailing_stop = False
# All other attributes and methods are here as they
# should be in any custom strategy...
...
class MyAwesomeStrategy2(MyAwesomeStrategy):
# Override something
stoploss = 0.08
trailing_stop = True
```
Both attributes and methods may be overriden, altering behavior of the original strategy in a way you need.
### Common mistakes when developing strategies
## Common mistakes when developing strategies
Backtesting analyzes the whole time-range at once for performance reasons. Because of this, strategy authors need to make sure that strategies do not look-ahead into the future.
This is a common pain-point, which can cause huge differences between backtesting and dry/live run methods, since they all use data which is not available during dry/live runs, so these strategies will perform well during backtesting, but will fail / perform badly in real conditions.
@ -705,7 +698,7 @@ The following lists some common patterns which should be avoided to prevent frus
- don't use `dataframe['volume'].mean()`. This uses the full DataFrame for backtesting, including data from the future. Use `dataframe['volume'].rolling(<window>).mean()` instead
- don't use `.resample('1h')`. This uses the left border of the interval, so moves data from an hour to the start of the hour. Use `.resample('1h', label='right')` instead.
### Further strategy ideas
## Further strategy ideas
To get additional Ideas for strategies, head over to our [strategy repository](https://github.com/freqtrade/freqtrade-strategies). Feel free to use them as they are - but results will depend on the current market situation, pairs used etc. - therefore please backtest the strategy for your exchange/desired pairs first, evaluate carefully, use at your own risk.
Feel free to use any of them as inspiration for your own strategies.

View File

@ -85,10 +85,44 @@ Analyze a trades dataframe (also used below for plotting)
```python
from freqtrade.data.btanalysis import load_backtest_data
from freqtrade.data.btanalysis import load_backtest_data, load_backtest_stats
# Load backtest results
trades = load_backtest_data(config["user_data_dir"] / "backtest_results/backtest-result.json")
# if backtest_dir points to a directory, it'll automatically load the last backtest file.
backtest_dir = config["user_data_dir"] / "backtest_results"
# backtest_dir can also point to a specific file
# backtest_dir = config["user_data_dir"] / "backtest_results/backtest-result-2020-07-01_20-04-22.json"
```
```python
# You can get the full backtest statistics by using the following command.
# This contains all information used to generate the backtest result.
stats = load_backtest_stats(backtest_dir)
strategy = 'SampleStrategy'
# All statistics are available per strategy, so if `--strategy-list` was used during backtest, this will be reflected here as well.
# Example usages:
print(stats['strategy'][strategy]['results_per_pair'])
# Get pairlist used for this backtest
print(stats['strategy'][strategy]['pairlist'])
# Get market change (average change of all pairs from start to end of the backtest period)
print(stats['strategy'][strategy]['market_change'])
# Maximum drawdown ()
print(stats['strategy'][strategy]['max_drawdown'])
# Maximum drawdown start and end
print(stats['strategy'][strategy]['drawdown_start'])
print(stats['strategy'][strategy]['drawdown_end'])
# Get strategy comparison (only relevant if multiple strategies were compared)
print(stats['strategy_comparison'])
```
```python
# Load backtested trades as dataframe
trades = load_backtest_data(backtest_dir)
# Show value-counts per pair
trades.groupby("pair")["sell_reason"].value_counts()

View File

@ -47,29 +47,31 @@ Per default, the Telegram bot shows predefined commands. Some commands
are only available by sending them to the bot. The table below list the
official commands. You can ask at any moment for help with `/help`.
| Command | Default | Description |
|----------|---------|-------------|
| `/start` | | Starts the trader
| `/stop` | | Stops the trader
| `/stopbuy` | | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
| `/reload_config` | | Reloads the configuration file
| `/show_config` | | Shows part of the current configuration with relevant settings to operation
| `/status` | | Lists all open trades
| `/status table` | | List all open trades in a table format. Pending buy orders are marked with an asterisk (*) Pending sell orders are marked with a double asterisk (**)
| `/trades [limit]` | | List all recently closed trades in a table format.
| `/count` | | Displays number of trades used and available
| `/profit` | | Display a summary of your profit/loss from close trades and some stats about your performance
| `/forcesell <trade_id>` | | Instantly sells the given trade (Ignoring `minimum_roi`).
| `/forcesell all` | | Instantly sells all open trades (Ignoring `minimum_roi`).
| `/forcebuy <pair> [rate]` | | Instantly buys the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
| `/performance` | | Show performance of each finished trade grouped by pair
| `/balance` | | Show account balance per currency
| `/daily <n>` | 7 | Shows profit or loss per day, over the last n days
| `/whitelist` | | Show the current whitelist
| `/blacklist [pair]` | | Show the current blacklist, or adds a pair to the blacklist.
| `/edge` | | Show validated pairs by Edge if it is enabled.
| `/help` | | Show help message
| `/version` | | Show version
| Command | Description |
|----------|-------------|
| `/start` | Starts the trader
| `/stop` | Stops the trader
| `/stopbuy` | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
| `/reload_config` | Reloads the configuration file
| `/show_config` | Shows part of the current configuration with relevant settings to operation
| `/logs [limit]` | Show last log messages.
| `/status` | Lists all open trades
| `/status table` | List all open trades in a table format. Pending buy orders are marked with an asterisk (*) Pending sell orders are marked with a double asterisk (**)
| `/trades [limit]` | List all recently closed trades in a table format.
| `/delete <trade_id>` | Delete a specific trade from the Database. Tries to close open orders. Requires manual handling of this trade on the exchange.
| `/count` | Displays number of trades used and available
| `/profit` | Display a summary of your profit/loss from close trades and some stats about your performance
| `/forcesell <trade_id>` | Instantly sells the given trade (Ignoring `minimum_roi`).
| `/forcesell all` | Instantly sells all open trades (Ignoring `minimum_roi`).
| `/forcebuy <pair> [rate]` | Instantly buys the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
| `/performance` | Show performance of each finished trade grouped by pair
| `/balance` | Show account balance per currency
| `/daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7)
| `/whitelist` | Show the current whitelist
| `/blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
| `/edge` | Show validated pairs by Edge if it is enabled.
| `/help` | Show help message
| `/version` | Show version
## Telegram commands in action
@ -114,6 +116,7 @@ For each open trade, the bot will send you the following message.
### /status table
Return the status of all open trades in a table format.
```
ID Pair Since Profit
---- -------- ------- --------
@ -124,6 +127,7 @@ Return the status of all open trades in a table format.
### /count
Return the number of trades used and available.
```
current max
--------- -----
@ -209,7 +213,7 @@ Shows the current whitelist
Shows the current blacklist.
If Pair is set, then this pair will be added to the pairlist.
Also supports multiple pairs, seperated by a space.
Also supports multiple pairs, separated by a space.
Use `/reload_config` to reset the blacklist.
> Using blacklist `StaticPairList` with 2 pairs
@ -217,7 +221,7 @@ Use `/reload_config` to reset the blacklist.
### /edge
Shows pairs validated by Edge along with their corresponding winrate, expectancy and stoploss values.
Shows pairs validated by Edge along with their corresponding win-rate, expectancy and stoploss values.
> **Edge only validated following pairs:**
```

View File

@ -432,9 +432,9 @@ usage: freqtrade hyperopt-list [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[--max-trades INT] [--min-avg-time FLOAT]
[--max-avg-time FLOAT] [--min-avg-profit FLOAT]
[--max-avg-profit FLOAT]
[--min-total-profit FLOAT]
[--max-total-profit FLOAT] [--no-color]
[--print-json] [--no-details]
[--min-total-profit FLOAT] [--max-total-profit FLOAT]
[--min-objective FLOAT] [--max-objective FLOAT]
[--no-color] [--print-json] [--no-details]
[--export-csv FILE]
optional arguments:
@ -453,6 +453,10 @@ optional arguments:
Select epochs on above total profit.
--max-total-profit FLOAT
Select epochs on below total profit.
--min-objective FLOAT
Select epochs on above objective (- is added by default).
--max-objective FLOAT
Select epochs on below objective (- is added by default).
--no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file.
--print-json Print best result detailization in JSON format.

View File

@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = '2020.7'
__version__ = '2020.8'
if __version__ == 'develop':

View File

@ -73,6 +73,7 @@ ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
"hyperopt_list_min_avg_time", "hyperopt_list_max_avg_time",
"hyperopt_list_min_avg_profit", "hyperopt_list_max_avg_profit",
"hyperopt_list_min_total_profit", "hyperopt_list_max_total_profit",
"hyperopt_list_min_objective", "hyperopt_list_max_objective",
"print_colorized", "print_json", "hyperopt_list_no_details",
"export_csv"]
@ -365,7 +366,7 @@ class Arguments:
plot_profit_cmd = subparsers.add_parser(
'plot-profit',
help='Generate plot showing profits.',
parents=[_common_parser],
parents=[_common_parser, _strategy_parser],
)
plot_profit_cmd.set_defaults(func=start_plot_profit)
self._build_args(optionlist=ARGS_PLOT_PROFIT, parser=plot_profit_cmd)

View File

@ -455,37 +455,49 @@ AVAILABLE_CLI_OPTIONS = {
),
"hyperopt_list_min_avg_time": Arg(
'--min-avg-time',
help='Select epochs on above average time.',
help='Select epochs above average time.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_avg_time": Arg(
'--max-avg-time',
help='Select epochs on under average time.',
help='Select epochs below average time.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_min_avg_profit": Arg(
'--min-avg-profit',
help='Select epochs on above average profit.',
help='Select epochs above average profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_avg_profit": Arg(
'--max-avg-profit',
help='Select epochs on below average profit.',
help='Select epochs below average profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_min_total_profit": Arg(
'--min-total-profit',
help='Select epochs on above total profit.',
help='Select epochs above total profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_total_profit": Arg(
'--max-total-profit',
help='Select epochs on below total profit.',
help='Select epochs below total profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_min_objective": Arg(
'--min-objective',
help='Select epochs above objective.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_objective": Arg(
'--max-objective',
help='Select epochs below objective.',
type=float,
metavar='FLOAT',
),

View File

@ -35,8 +35,8 @@ def start_download_data(args: Dict[str, Any]) -> None:
"Downloading data requires a list of pairs. "
"Please check the documentation on how to configure this.")
logger.info(f'About to download pairs: {config["pairs"]}, '
f'intervals: {config["timeframes"]} to {config["datadir"]}')
logger.info(f"About to download pairs: {config['pairs']}, "
f"intervals: {config['timeframes']} to {config['datadir']}")
pairs_not_available: List[str] = []
@ -51,21 +51,21 @@ def start_download_data(args: Dict[str, Any]) -> None:
if config.get('download_trades'):
pairs_not_available = refresh_backtest_trades_data(
exchange, pairs=config["pairs"], datadir=config['datadir'],
timerange=timerange, erase=bool(config.get("erase")),
exchange, pairs=config['pairs'], datadir=config['datadir'],
timerange=timerange, erase=bool(config.get('erase')),
data_format=config['dataformat_trades'])
# Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv(
pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange, erase=bool(config.get("erase")),
pairs=config['pairs'], timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange, erase=bool(config.get('erase')),
data_format_ohlcv=config['dataformat_ohlcv'],
data_format_trades=config['dataformat_trades'],
)
else:
pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange, erase=bool(config.get("erase")),
exchange, pairs=config['pairs'], timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange, erase=bool(config.get('erase')),
data_format=config['dataformat_ohlcv'])
except KeyboardInterrupt:

View File

@ -75,7 +75,7 @@ def start_new_strategy(args: Dict[str, Any]) -> None:
if args["strategy"] == "DefaultStrategy":
raise OperationalException("DefaultStrategy is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_STRATEGIES / (args["strategy"] + ".py")
new_path = config['user_data_dir'] / USERPATH_STRATEGIES / (args['strategy'] + '.py')
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
@ -125,11 +125,11 @@ def start_new_hyperopt(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if "hyperopt" in args and args["hyperopt"]:
if args["hyperopt"] == "DefaultHyperopt":
if 'hyperopt' in args and args['hyperopt']:
if args['hyperopt'] == 'DefaultHyperopt':
raise OperationalException("DefaultHyperopt is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_HYPEROPTS / (args["hyperopt"] + ".py")
new_path = config['user_data_dir'] / USERPATH_HYPEROPTS / (args['hyperopt'] + '.py')
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "

View File

@ -35,7 +35,9 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
'filter_max_objective': config.get('hyperopt_list_max_objective', None),
}
results_file = (config['user_data_dir'] /
@ -45,7 +47,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
epochs = Hyperopt.load_previous_results(results_file)
total_epochs = len(epochs)
epochs = _hyperopt_filter_epochs(epochs, filteroptions)
epochs = hyperopt_filter_epochs(epochs, filteroptions)
if print_colorized:
colorama_init(autoreset=True)
@ -92,14 +94,16 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
'filter_max_objective': config.get('hyperopt_list_max_objective', None)
}
# Previous evaluations
epochs = Hyperopt.load_previous_results(results_file)
total_epochs = len(epochs)
epochs = _hyperopt_filter_epochs(epochs, filteroptions)
epochs = hyperopt_filter_epochs(epochs, filteroptions)
filtered_epochs = len(epochs)
if n > filtered_epochs:
@ -119,7 +123,7 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
header_str="Epoch details")
def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
def hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
"""
Filter our items from the list of hyperopt results
"""
@ -127,6 +131,24 @@ def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
epochs = [x for x in epochs if x['is_best']]
if filteroptions['only_profitable']:
epochs = [x for x in epochs if x['results_metrics']['profit'] > 0]
epochs = _hyperopt_filter_epochs_trade_count(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_duration(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_profit(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_objective(epochs, filteroptions)
logger.info(f"{len(epochs)} " +
("best " if filteroptions['only_best'] else "") +
("profitable " if filteroptions['only_profitable'] else "") +
"epochs found.")
return epochs
def _hyperopt_filter_epochs_trade_count(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_trades'] > 0:
epochs = [
x for x in epochs
@ -137,6 +159,11 @@ def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
x for x in epochs
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
]
return epochs
def _hyperopt_filter_epochs_duration(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_avg_time'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = [
@ -149,6 +176,12 @@ def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
x for x in epochs
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
]
return epochs
def _hyperopt_filter_epochs_profit(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_avg_profit'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = [
@ -173,10 +206,18 @@ def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
x for x in epochs
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
]
return epochs
logger.info(f"{len(epochs)} " +
("best " if filteroptions['only_best'] else "") +
("profitable " if filteroptions['only_profitable'] else "") +
"epochs found.")
def _hyperopt_filter_epochs_objective(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_objective'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = [x for x in epochs if x['loss'] < filteroptions['filter_min_objective']]
if filteroptions['filter_max_objective'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = [x for x in epochs if x['loss'] > filteroptions['filter_max_objective']]
return epochs

View File

@ -14,7 +14,7 @@ from freqtrade.configuration import setup_utils_configuration
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (available_exchanges, ccxt_exchanges,
market_is_active, symbol_is_pair)
market_is_active)
from freqtrade.misc import plural
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode
@ -163,7 +163,7 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
tabular_data.append({'Id': v['id'], 'Symbol': v['symbol'],
'Base': v['base'], 'Quote': v['quote'],
'Active': market_is_active(v),
**({'Is pair': symbol_is_pair(v['symbol'])}
**({'Is pair': exchange.market_is_tradable(v)}
if not pairs_only else {})})
if (args.get('print_one_column', False) or

View File

@ -54,7 +54,7 @@ class Configuration:
:param files: List of file paths
:return: configuration dictionary
"""
c = Configuration({"config": files}, RunMode.OTHER)
c = Configuration({'config': files}, RunMode.OTHER)
return c.get_config()
def load_from_files(self, files: List[str]) -> Dict[str, Any]:
@ -123,10 +123,10 @@ class Configuration:
the -v/--verbose, --logfile options
"""
# Log level
config.update({'verbosity': self.args.get("verbosity", 0)})
config.update({'verbosity': self.args.get('verbosity', 0)})
if 'logfile' in self.args and self.args["logfile"]:
config.update({'logfile': self.args["logfile"]})
if 'logfile' in self.args and self.args['logfile']:
config.update({'logfile': self.args['logfile']})
setup_logging(config)
@ -149,22 +149,22 @@ class Configuration:
def _process_common_options(self, config: Dict[str, Any]) -> None:
# Set strategy if not specified in config and or if it's non default
if self.args.get("strategy") or not config.get('strategy'):
config.update({'strategy': self.args.get("strategy")})
if self.args.get('strategy') or not config.get('strategy'):
config.update({'strategy': self.args.get('strategy')})
self._args_to_config(config, argname='strategy_path',
logstring='Using additional Strategy lookup path: {}')
if ('db_url' in self.args and self.args["db_url"] and
self.args["db_url"] != constants.DEFAULT_DB_PROD_URL):
config.update({'db_url': self.args["db_url"]})
if ('db_url' in self.args and self.args['db_url'] and
self.args['db_url'] != constants.DEFAULT_DB_PROD_URL):
config.update({'db_url': self.args['db_url']})
logger.info('Parameter --db-url detected ...')
if config.get('forcebuy_enable', False):
logger.warning('`forcebuy` RPC message enabled.')
# Support for sd_notify
if 'sd_notify' in self.args and self.args["sd_notify"]:
if 'sd_notify' in self.args and self.args['sd_notify']:
config['internals'].update({'sd_notify': True})
def _process_datadir_options(self, config: Dict[str, Any]) -> None:
@ -173,24 +173,24 @@ class Configuration:
--user-data, --datadir
"""
# Check exchange parameter here - otherwise `datadir` might be wrong.
if "exchange" in self.args and self.args["exchange"]:
config['exchange']['name'] = self.args["exchange"]
if 'exchange' in self.args and self.args['exchange']:
config['exchange']['name'] = self.args['exchange']
logger.info(f"Using exchange {config['exchange']['name']}")
if 'pair_whitelist' not in config['exchange']:
config['exchange']['pair_whitelist'] = []
if 'user_data_dir' in self.args and self.args["user_data_dir"]:
config.update({'user_data_dir': self.args["user_data_dir"]})
if 'user_data_dir' in self.args and self.args['user_data_dir']:
config.update({'user_data_dir': self.args['user_data_dir']})
elif 'user_data_dir' not in config:
# Default to cwd/user_data (legacy option ...)
config.update({'user_data_dir': str(Path.cwd() / "user_data")})
config.update({'user_data_dir': str(Path.cwd() / 'user_data')})
# reset to user_data_dir so this contains the absolute path.
config['user_data_dir'] = create_userdata_dir(config['user_data_dir'], create_dir=False)
logger.info('Using user-data directory: %s ...', config['user_data_dir'])
config.update({'datadir': create_datadir(config, self.args.get("datadir", None))})
config.update({'datadir': create_datadir(config, self.args.get('datadir', None))})
logger.info('Using data directory: %s ...', config.get('datadir'))
if self.args.get('exportfilename'):
@ -199,7 +199,7 @@ class Configuration:
config['exportfilename'] = Path(config['exportfilename'])
else:
config['exportfilename'] = (config['user_data_dir']
/ 'backtest_results/backtest-result.json')
/ 'backtest_results')
def _process_optimize_options(self, config: Dict[str, Any]) -> None:
@ -219,8 +219,8 @@ class Configuration:
config.update({'use_max_market_positions': False})
logger.info('Parameter --disable-max-market-positions detected ...')
logger.info('max_open_trades set to unlimited ...')
elif 'max_open_trades' in self.args and self.args["max_open_trades"]:
config.update({'max_open_trades': self.args["max_open_trades"]})
elif 'max_open_trades' in self.args and self.args['max_open_trades']:
config.update({'max_open_trades': self.args['max_open_trades']})
logger.info('Parameter --max-open-trades detected, '
'overriding max_open_trades to: %s ...', config.get('max_open_trades'))
elif config['runmode'] in NON_UTIL_MODES:
@ -334,6 +334,12 @@ class Configuration:
self._args_to_config(config, argname='hyperopt_list_max_total_profit',
logstring='Parameter --max-total-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_objective',
logstring='Parameter --min-objective detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_objective',
logstring='Parameter --max-objective detected: {}')
self._args_to_config(config, argname='hyperopt_list_no_details',
logstring='Parameter --no-details detected: {}')
@ -441,12 +447,12 @@ class Configuration:
config['pairs'].sort()
return
if "config" in self.args and self.args["config"]:
if 'config' in self.args and self.args['config']:
logger.info("Using pairlist from configuration.")
config['pairs'] = config.get('exchange', {}).get('pair_whitelist')
else:
# Fall back to /dl_path/pairs.json
pairs_file = config['datadir'] / "pairs.json"
pairs_file = config['datadir'] / 'pairs.json'
if pairs_file.exists():
with pairs_file.open('r') as f:
config['pairs'] = json_load(f)

View File

@ -26,12 +26,15 @@ AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
'ShuffleFilter', 'SpreadFilter']
AVAILABLE_DATAHANDLERS = ['json', 'jsongz']
DRY_RUN_WALLET = 1000
DATETIME_PRINT_FORMAT = '%Y-%m-%d %H:%M:%S'
MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons
DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
# Don't modify sequence of DEFAULT_TRADES_COLUMNS
# it has wide consequences for stored trades files
DEFAULT_TRADES_COLUMNS = ['timestamp', 'id', 'type', 'side', 'price', 'amount', 'cost']
LAST_BT_RESULT_FN = '.last_result.json'
USERPATH_HYPEROPTS = 'hyperopts'
USERPATH_STRATEGIES = 'strategies'
USERPATH_NOTEBOOKS = 'notebooks'

View File

@ -3,52 +3,123 @@ Helpers when analyzing backtest data
"""
import logging
from pathlib import Path
from typing import Dict, Union, Tuple
from typing import Dict, Union, Tuple, Any, Optional
import numpy as np
import pandas as pd
from datetime import timezone
from freqtrade import persistence
from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.misc import json_load
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
# must align with columns in backtest.py
BT_DATA_COLUMNS = ["pair", "profit_percent", "open_time", "close_time", "index", "duration",
BT_DATA_COLUMNS = ["pair", "profit_percent", "open_date", "close_date", "index", "trade_duration",
"open_rate", "close_rate", "open_at_end", "sell_reason"]
def load_backtest_data(filename: Union[Path, str]) -> pd.DataFrame:
def get_latest_backtest_filename(directory: Union[Path, str]) -> str:
"""
Load backtest data file.
:param filename: pathlib.Path object, or string pointing to the file.
:return: a dataframe with the analysis results
Get latest backtest export based on '.last_result.json'.
:param directory: Directory to search for last result
:return: string containing the filename of the latest backtest result
:raises: ValueError in the following cases:
* Directory does not exist
* `directory/.last_result.json` does not exist
* `directory/.last_result.json` has the wrong content
"""
if isinstance(filename, str):
filename = Path(filename)
if isinstance(directory, str):
directory = Path(directory)
if not directory.is_dir():
raise ValueError(f"Directory '{directory}' does not exist.")
filename = directory / LAST_BT_RESULT_FN
if not filename.is_file():
raise ValueError(f"File {filename} does not exist.")
raise ValueError(
f"Directory '{directory}' does not seem to contain backtest statistics yet.")
with filename.open() as file:
data = json_load(file)
df = pd.DataFrame(data, columns=BT_DATA_COLUMNS)
if 'latest_backtest' not in data:
raise ValueError(f"Invalid '{LAST_BT_RESULT_FN}' format.")
df['open_time'] = pd.to_datetime(df['open_time'],
unit='s',
utc=True,
infer_datetime_format=True
)
df['close_time'] = pd.to_datetime(df['close_time'],
unit='s',
utc=True,
infer_datetime_format=True
)
df['profit'] = df['close_rate'] - df['open_rate']
df = df.sort_values("open_time").reset_index(drop=True)
return data['latest_backtest']
def load_backtest_stats(filename: Union[Path, str]) -> Dict[str, Any]:
"""
Load backtest statistics file.
:param filename: pathlib.Path object, or string pointing to the file.
:return: a dictionary containing the resulting file.
"""
if isinstance(filename, str):
filename = Path(filename)
if filename.is_dir():
filename = filename / get_latest_backtest_filename(filename)
if not filename.is_file():
raise ValueError(f"File {filename} does not exist.")
logger.info(f"Loading backtest result from {filename}")
with filename.open() as file:
data = json_load(file)
return data
def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = None) -> pd.DataFrame:
"""
Load backtest data file.
:param filename: pathlib.Path object, or string pointing to a file or directory
:param strategy: Strategy to load - mainly relevant for multi-strategy backtests
Can also serve as protection to load the correct result.
:return: a dataframe with the analysis results
:raise: ValueError if loading goes wrong.
"""
data = load_backtest_stats(filename)
if not isinstance(data, list):
# new, nested format
if 'strategy' not in data:
raise ValueError("Unknown dataformat.")
if not strategy:
if len(data['strategy']) == 1:
strategy = list(data['strategy'].keys())[0]
else:
raise ValueError("Detected backtest result with more than one strategy. "
"Please specify a strategy.")
if strategy not in data['strategy']:
raise ValueError(f"Strategy {strategy} not available in the backtest result.")
data = data['strategy'][strategy]['trades']
df = pd.DataFrame(data)
df['open_date'] = pd.to_datetime(df['open_date'],
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
utc=True,
infer_datetime_format=True
)
else:
# old format - only with lists.
df = pd.DataFrame(data, columns=BT_DATA_COLUMNS)
df['open_date'] = pd.to_datetime(df['open_date'],
unit='s',
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
unit='s',
utc=True,
infer_datetime_format=True
)
df['profit_abs'] = df['close_rate'] - df['open_rate']
df = df.sort_values("open_date").reset_index(drop=True)
return df
@ -62,9 +133,9 @@ def analyze_trade_parallelism(results: pd.DataFrame, timeframe: str) -> pd.DataF
"""
from freqtrade.exchange import timeframe_to_minutes
timeframe_min = timeframe_to_minutes(timeframe)
dates = [pd.Series(pd.date_range(row[1].open_time, row[1].close_time,
dates = [pd.Series(pd.date_range(row[1]['open_date'], row[1]['close_date'],
freq=f"{timeframe_min}min"))
for row in results[['open_time', 'close_time']].iterrows()]
for row in results[['open_date', 'close_date']].iterrows()]
deltas = [len(x) for x in dates]
dates = pd.Series(pd.concat(dates).values, name='date')
df2 = pd.DataFrame(np.repeat(results.values, deltas, axis=0), columns=results.columns)
@ -90,21 +161,26 @@ def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
return df_final[df_final['open_trades'] > max_open_trades]
def load_trades_from_db(db_url: str) -> pd.DataFrame:
def load_trades_from_db(db_url: str, strategy: Optional[str] = None) -> pd.DataFrame:
"""
Load trades from a DB (using dburl)
:param db_url: Sqlite url (default format sqlite:///tradesv3.dry-run.sqlite)
:param strategy: Strategy to load - mainly relevant for multi-strategy backtests
Can also serve as protection to load the correct result.
:return: Dataframe containing Trades
"""
trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS)
persistence.init(db_url, clean_open_orders=False)
columns = ["pair", "open_time", "close_time", "profit", "profit_percent",
"open_rate", "close_rate", "amount", "duration", "sell_reason",
columns = ["pair", "open_date", "close_date", "profit", "profit_percent",
"open_rate", "close_rate", "amount", "trade_duration", "sell_reason",
"fee_open", "fee_close", "open_rate_requested", "close_rate_requested",
"stake_amount", "max_rate", "min_rate", "id", "exchange",
"stop_loss", "initial_stop_loss", "strategy", "timeframe"]
filters = []
if strategy:
filters.append(Trade.strategy == strategy)
trades = pd.DataFrame([(t.pair,
t.open_date.replace(tzinfo=timezone.utc),
t.close_date.replace(tzinfo=timezone.utc) if t.close_date else None,
@ -123,16 +199,16 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
t.stop_loss, t.initial_stop_loss,
t.strategy, t.timeframe
)
for t in Trade.get_trades().all()],
for t in Trade.get_trades(filters).all()],
columns=columns)
return trades
def load_trades(source: str, db_url: str, exportfilename: Path,
no_trades: bool = False) -> pd.DataFrame:
no_trades: bool = False, strategy: Optional[str] = None) -> pd.DataFrame:
"""
Based on configuration option "trade_source":
Based on configuration option 'trade_source':
* loads data from DB (using `db_url`)
* loads data from backtestfile (using `exportfilename`)
:param source: "DB" or "file" - specify source to load from
@ -148,7 +224,7 @@ def load_trades(source: str, db_url: str, exportfilename: Path,
if source == "DB":
return load_trades_from_db(db_url)
elif source == "file":
return load_backtest_data(exportfilename)
return load_backtest_data(exportfilename, strategy)
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
@ -163,11 +239,31 @@ def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
else:
trades_start = dataframe.iloc[0]['date']
trades_stop = dataframe.iloc[-1]['date']
trades = trades.loc[(trades['open_time'] >= trades_start) &
(trades['close_time'] <= trades_stop)]
trades = trades.loc[(trades['open_date'] >= trades_start) &
(trades['close_date'] <= trades_stop)]
return trades
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
"""
Calculate market change based on "column".
Calculation is done by taking the first non-null and the last non-null element of each column
and calculating the pctchange as "(last - first) / first".
Then the results per pair are combined as mean.
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return:
"""
tmp_means = []
for pair, df in data.items():
start = df[column].dropna().iloc[0]
end = df[column].dropna().iloc[-1]
tmp_means.append((end - start) / start)
return np.mean(tmp_means)
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
column: str = "close") -> pd.DataFrame:
"""
@ -190,7 +286,7 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
"""
Adds a column `col_name` with the cumulative profit for the given trades array.
:param df: DataFrame with date index
:param trades: DataFrame containing trades (requires columns close_time and profit_percent)
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
:param col_name: Column name that will be assigned the results
:param timeframe: Timeframe used during the operations
:return: Returns df with one additional column, col_name, containing the cumulative profit.
@ -201,7 +297,7 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
from freqtrade.exchange import timeframe_to_minutes
timeframe_minutes = timeframe_to_minutes(timeframe)
# Resample to timeframe to make sure trades match candles
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_time'
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_date'
)[['profit_percent']].sum()
df.loc[:, col_name] = _trades_sum.cumsum()
# Set first value to 0
@ -211,13 +307,13 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
return df
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_time',
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_percent'
) -> Tuple[float, pd.Timestamp, pd.Timestamp]:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_time and profit_percent)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_time')
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_percent')
:return: Tuple (float, highdate, lowdate) with absolute max drawdown, high and low time
:raise: ValueError if trade-dataframe was found empty.

View File

@ -9,7 +9,7 @@ import utils_find_1st as utf1st
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT, DATETIME_PRINT_FORMAT
from freqtrade.exceptions import OperationalException
from freqtrade.data.history import get_timerange, load_data, refresh_data
from freqtrade.strategy.interface import SellType
@ -121,12 +121,9 @@ class Edge:
# Print timeframe
min_date, max_date = get_timerange(preprocessed)
logger.info(
'Measuring data from %s up to %s (%s days) ...',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
logger.info(f'Measuring data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(max_date - min_date).days} days)..')
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
trades: list = []
@ -240,7 +237,7 @@ class Edge:
# All returned values are relative, they are defined as ratios.
stake = 0.015
result['trade_duration'] = result['close_time'] - result['open_time']
result['trade_duration'] = result['close_date'] - result['open_date']
result['trade_duration'] = result['trade_duration'].map(
lambda x: int(x.total_seconds() / 60))
@ -281,8 +278,8 @@ class Edge:
#
# Removing Pumps
if self.edge_config.get('remove_pumps', False):
results = results.groupby(['pair', 'stoploss']).apply(
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
results = results[results['profit_abs'] < 2 * results['profit_abs'].std()
+ results['profit_abs'].mean()]
##########################################################################
# Removing trades having a duration more than X minutes (set in config)
@ -430,10 +427,8 @@ class Edge:
'stoploss': stoploss,
'profit_ratio': '',
'profit_abs': '',
'open_time': date_column[open_trade_index],
'close_time': date_column[exit_index],
'open_index': start_point + open_trade_index,
'close_index': start_point + exit_index,
'open_date': date_column[open_trade_index],
'close_date': date_column[exit_index],
'trade_duration': '',
'open_rate': round(open_price, 15),
'close_rate': round(exit_price, 15),

View File

@ -29,7 +29,14 @@ class PricingError(DependencyException):
"""
class InvalidOrderException(FreqtradeException):
class ExchangeError(DependencyException):
"""
Error raised out of the exchange.
Has multiple Errors to determine the appropriate error.
"""
class InvalidOrderException(ExchangeError):
"""
This is returned when the order is not valid. Example:
If stoploss on exchange order is hit, then trying to cancel the order
@ -44,13 +51,6 @@ class RetryableOrderError(InvalidOrderException):
"""
class ExchangeError(DependencyException):
"""
Error raised out of the exchange.
Has multiple Errors to determine the appropriate error.
"""
class TemporaryError(ExchangeError):
"""
Temporary network or exchange related error.

View File

@ -12,8 +12,7 @@ from freqtrade.exchange.exchange import (timeframe_to_seconds,
timeframe_to_msecs,
timeframe_to_next_date,
timeframe_to_prev_date)
from freqtrade.exchange.exchange import (market_is_active,
symbol_is_pair)
from freqtrade.exchange.exchange import (market_is_active)
from freqtrade.exchange.kraken import Kraken
from freqtrade.exchange.binance import Binance
from freqtrade.exchange.bibox import Bibox

View File

@ -16,6 +16,7 @@ BAD_EXCHANGES = {
"Details in https://github.com/freqtrade/freqtrade/issues/1983",
"hitbtc": "This API cannot be used with Freqtrade. "
"Use `hitbtc2` exchange id to access this exchange.",
"phemex": "Does not provide history. ",
**dict.fromkeys([
'adara',
'anxpro',
@ -107,12 +108,12 @@ def retrier_async(f):
except TemporaryError as ex:
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
if count > 0:
logger.warning('retrying %s() still for %s times', f.__name__, count)
count -= 1
kwargs.update({'count': count})
logger.warning('retrying %s() still for %s times', f.__name__, count)
if isinstance(ex, DDosProtection):
backoff_delay = calculate_backoff(count + 1, API_RETRY_COUNT)
logger.debug(f"Applying DDosProtection backoff delay: {backoff_delay}")
logger.info(f"Applying DDosProtection backoff delay: {backoff_delay}")
await asyncio.sleep(backoff_delay)
return await wrapper(*args, **kwargs)
else:
@ -131,13 +132,13 @@ def retrier(_func=None, retries=API_RETRY_COUNT):
except (TemporaryError, RetryableOrderError) as ex:
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
if count > 0:
logger.warning('retrying %s() still for %s times', f.__name__, count)
count -= 1
kwargs.update({'count': count})
logger.warning('retrying %s() still for %s times', f.__name__, count)
if isinstance(ex, DDosProtection) or isinstance(ex, RetryableOrderError):
# increasing backoff
backoff_delay = calculate_backoff(count + 1, retries)
logger.debug(f"Applying DDosProtection backoff delay: {backoff_delay}")
logger.info(f"Applying DDosProtection backoff delay: {backoff_delay}")
time.sleep(backoff_delay)
return wrapper(*args, **kwargs)
else:

View File

@ -24,7 +24,7 @@ from freqtrade.exceptions import (DDosProtection, ExchangeError,
InvalidOrderException, OperationalException,
RetryableOrderError, TemporaryError)
from freqtrade.exchange.common import BAD_EXCHANGES, retrier, retrier_async
from freqtrade.misc import deep_merge_dicts, safe_value_fallback
from freqtrade.misc import deep_merge_dicts, safe_value_fallback2
CcxtModuleType = Any
@ -85,8 +85,8 @@ class Exchange:
# Deep merge ft_has with default ft_has options
self._ft_has = deep_merge_dicts(self._ft_has, deepcopy(self._ft_has_default))
if exchange_config.get("_ft_has_params"):
self._ft_has = deep_merge_dicts(exchange_config.get("_ft_has_params"),
if exchange_config.get('_ft_has_params'):
self._ft_has = deep_merge_dicts(exchange_config.get('_ft_has_params'),
self._ft_has)
logger.info("Overriding exchange._ft_has with config params, result: %s", self._ft_has)
@ -222,7 +222,7 @@ class Exchange:
if quote_currencies:
markets = {k: v for k, v in markets.items() if v['quote'] in quote_currencies}
if pairs_only:
markets = {k: v for k, v in markets.items() if symbol_is_pair(v['symbol'])}
markets = {k: v for k, v in markets.items() if self.market_is_tradable(v)}
if active_only:
markets = {k: v for k, v in markets.items() if market_is_active(v)}
return markets
@ -246,6 +246,19 @@ class Exchange:
"""
return self.markets.get(pair, {}).get('base', '')
def market_is_tradable(self, market: Dict[str, Any]) -> bool:
"""
Check if the market symbol is tradable by Freqtrade.
By default, checks if it's splittable by `/` and both sides correspond to base / quote
"""
symbol_parts = market['symbol'].split('/')
return (len(symbol_parts) == 2 and
len(symbol_parts[0]) > 0 and
len(symbol_parts[1]) > 0 and
symbol_parts[0] == market.get('base') and
symbol_parts[1] == market.get('quote')
)
def klines(self, pair_interval: Tuple[str, str], copy: bool = True) -> DataFrame:
if pair_interval in self._klines:
return self._klines[pair_interval].copy() if copy else self._klines[pair_interval]
@ -258,8 +271,8 @@ class Exchange:
api.urls['api'] = api.urls['test']
logger.info("Enabled Sandbox API on %s", name)
else:
logger.warning(name, "No Sandbox URL in CCXT, exiting. "
"Please check your config.json")
logger.warning(
f"No Sandbox URL in CCXT for {name}, exiting. Please check your config.json")
raise OperationalException(f'Exchange {name} does not provide a sandbox api')
def _load_async_markets(self, reload: bool = False) -> None:
@ -480,6 +493,7 @@ class Exchange:
"id": order_id,
'pair': pair,
'price': rate,
'average': rate,
'amount': _amount,
'cost': _amount * rate,
'type': ordertype,
@ -974,7 +988,7 @@ class Exchange:
except ccxt.BaseError as e:
raise OperationalException(e) from e
# Assign method to fetch_stoploss_order to allow easy overriding in other classes
# Assign method to cancel_stoploss_order to allow easy overriding in other classes
cancel_stoploss_order = cancel_order
def is_cancel_order_result_suitable(self, corder) -> bool:
@ -999,7 +1013,7 @@ class Exchange:
if self.is_cancel_order_result_suitable(corder):
return corder
except InvalidOrderException:
logger.warning(f"Could not cancel order {order_id}.")
logger.warning(f"Could not cancel order {order_id} for {pair}.")
try:
order = self.fetch_order(order_id, pair)
except InvalidOrderException:
@ -1008,7 +1022,7 @@ class Exchange:
return order
@retrier
@retrier(retries=5)
def fetch_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:
try:
@ -1022,10 +1036,10 @@ class Exchange:
return self._api.fetch_order(order_id, pair)
except ccxt.OrderNotFound as e:
raise RetryableOrderError(
f'Order not found (id: {order_id}). Message: {e}') from e
f'Order not found (pair: {pair} id: {order_id}). Message: {e}') from e
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Tried to get an invalid order (id: {order_id}). Message: {e}') from e
f'Tried to get an invalid order (pair: {pair} id: {order_id}). Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
@ -1040,10 +1054,10 @@ class Exchange:
@retrier
def fetch_l2_order_book(self, pair: str, limit: int = 100) -> dict:
"""
get order book level 2 from exchange
Notes:
20180619: bittrex doesnt support limits -.-
Get L2 order book from exchange.
Can be limited to a certain amount (if supported).
Returns a dict in the format
{'asks': [price, volume], 'bids': [price, volume]}
"""
try:
@ -1144,7 +1158,7 @@ class Exchange:
if fee_curr in self.get_pair_base_currency(order['symbol']):
# Base currency - divide by amount
return round(
order['fee']['cost'] / safe_value_fallback(order, order, 'filled', 'amount'), 8)
order['fee']['cost'] / safe_value_fallback2(order, order, 'filled', 'amount'), 8)
elif fee_curr in self.get_pair_quote_currency(order['symbol']):
# Quote currency - divide by cost
return round(order['fee']['cost'] / order['cost'], 8) if order['cost'] else None
@ -1157,7 +1171,7 @@ class Exchange:
comb = self.get_valid_pair_combination(fee_curr, self._config['stake_currency'])
tick = self.fetch_ticker(comb)
fee_to_quote_rate = safe_value_fallback(tick, tick, 'last', 'ask')
fee_to_quote_rate = safe_value_fallback2(tick, tick, 'last', 'ask')
return round((order['fee']['cost'] * fee_to_quote_rate) / order['cost'], 8)
except ExchangeError:
return None
@ -1172,7 +1186,6 @@ class Exchange:
return (order['fee']['cost'],
order['fee']['currency'],
self.calculate_fee_rate(order))
# calculate rate ? (order['fee']['cost'] / (order['amount'] * order['price']))
def is_exchange_bad(exchange_name: str) -> bool:
@ -1258,20 +1271,6 @@ def timeframe_to_next_date(timeframe: str, date: datetime = None) -> datetime:
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
def symbol_is_pair(market_symbol: str, base_currency: str = None,
quote_currency: str = None) -> bool:
"""
Check if the market symbol is a pair, i.e. that its symbol consists of the base currency and the
quote currency separated by '/' character. If base_currency and/or quote_currency is passed,
it also checks that the symbol contains appropriate base and/or quote currency part before
and after the separating character correspondingly.
"""
symbol_parts = market_symbol.split('/')
return (len(symbol_parts) == 2 and
(symbol_parts[0] == base_currency if base_currency else len(symbol_parts[0]) > 0) and
(symbol_parts[1] == quote_currency if quote_currency else len(symbol_parts[1]) > 0))
def market_is_active(market: Dict) -> bool:
"""
Return True if the market is active.

View File

@ -1,6 +1,6 @@
""" FTX exchange subclass """
import logging
from typing import Dict
from typing import Any, Dict
import ccxt
@ -20,6 +20,16 @@ class Ftx(Exchange):
"ohlcv_candle_limit": 1500,
}
def market_is_tradable(self, market: Dict[str, Any]) -> bool:
"""
Check if the market symbol is tradable by Freqtrade.
Default checks + check if pair is spot pair (no futures trading yet).
"""
parent_check = super().market_is_tradable(market)
return (parent_check and
market.get('spot', False) is True)
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
@ -78,7 +88,7 @@ class Ftx(Exchange):
except ccxt.BaseError as e:
raise OperationalException(e) from e
@retrier
@retrier(retries=5)
def fetch_stoploss_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:
try:

View File

@ -1,6 +1,6 @@
""" Kraken exchange subclass """
import logging
from typing import Dict
from typing import Any, Dict
import ccxt
@ -22,6 +22,16 @@ class Kraken(Exchange):
"trades_pagination_arg": "since",
}
def market_is_tradable(self, market: Dict[str, Any]) -> bool:
"""
Check if the market symbol is tradable by Freqtrade.
Default checks + check if pair is darkpool pair.
"""
parent_check = super().market_is_tradable(market)
return (parent_check and
market.get('darkpool', False) is False)
@retrier
def get_balances(self) -> dict:
if self._config['dry_run']:

View File

@ -20,7 +20,7 @@ from freqtrade.edge import Edge
from freqtrade.exceptions import (DependencyException, ExchangeError,
InvalidOrderException, PricingError)
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date
from freqtrade.misc import safe_value_fallback
from freqtrade.misc import safe_value_fallback, safe_value_fallback2
from freqtrade.pairlist.pairlistmanager import PairListManager
from freqtrade.persistence import Trade
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
@ -275,7 +275,7 @@ class FreqtradeBot:
rate = self._buy_rate_cache.get(pair)
# Check if cache has been invalidated
if rate:
logger.info(f"Using cached buy rate for {pair}.")
logger.debug(f"Using cached buy rate for {pair}.")
return rate
bid_strategy = self.config.get('bid_strategy', {})
@ -433,7 +433,9 @@ class FreqtradeBot:
"""
logger.debug(f"create_trade for pair {pair}")
if self.strategy.is_pair_locked(pair):
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(pair, self.strategy.timeframe)
if self.strategy.is_pair_locked(
pair, analyzed_df.iloc[-1]['date'] if len(analyzed_df) > 0 else None):
logger.info(f"Pair {pair} is currently locked.")
return False
@ -444,7 +446,6 @@ class FreqtradeBot:
return False
# running get_signal on historical data fetched
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(pair, self.strategy.timeframe)
(buy, sell) = self.strategy.get_signal(pair, self.strategy.timeframe, analyzed_df)
if buy and not sell:
@ -523,7 +524,7 @@ class FreqtradeBot:
time_in_force=time_in_force):
logger.info(f"User requested abortion of buying {pair}")
return False
amount = self.exchange.amount_to_precision(pair, amount)
order = self.exchange.buy(pair=pair, ordertype=order_type,
amount=amount, rate=buy_limit_requested,
time_in_force=time_in_force)
@ -532,6 +533,7 @@ class FreqtradeBot:
# we assume the order is executed at the price requested
buy_limit_filled_price = buy_limit_requested
amount_requested = amount
if order_status == 'expired' or order_status == 'rejected':
order_tif = self.strategy.order_time_in_force['buy']
@ -552,15 +554,15 @@ class FreqtradeBot:
order['filled'], order['amount'], order['remaining']
)
stake_amount = order['cost']
amount = order['amount']
buy_limit_filled_price = order['price']
amount = safe_value_fallback(order, 'filled', 'amount')
buy_limit_filled_price = safe_value_fallback(order, 'average', 'price')
order_id = None
# in case of FOK the order may be filled immediately and fully
elif order_status == 'closed':
stake_amount = order['cost']
amount = order['amount']
buy_limit_filled_price = order['price']
amount = safe_value_fallback(order, 'filled', 'amount')
buy_limit_filled_price = safe_value_fallback(order, 'average', 'price')
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
@ -568,6 +570,7 @@ class FreqtradeBot:
pair=pair,
stake_amount=stake_amount,
amount=amount,
amount_requested=amount_requested,
fee_open=fee,
fee_close=fee,
open_rate=buy_limit_filled_price,
@ -660,7 +663,7 @@ class FreqtradeBot:
trades_closed += 1
except DependencyException as exception:
logger.warning('Unable to sell trade: %s', exception)
logger.warning('Unable to sell trade %s: %s', trade.pair, exception)
# Updating wallets if any trade occured
if trades_closed:
@ -691,7 +694,7 @@ class FreqtradeBot:
rate = self._sell_rate_cache.get(pair)
# Check if cache has been invalidated
if rate:
logger.info(f"Using cached sell rate for {pair}.")
logger.debug(f"Using cached sell rate for {pair}.")
return rate
ask_strategy = self.config.get('ask_strategy', {})
@ -768,7 +771,7 @@ class FreqtradeBot:
logger.debug('Found no sell signal for %s.', trade)
return False
def create_stoploss_order(self, trade: Trade, stop_price: float, rate: float) -> bool:
def create_stoploss_order(self, trade: Trade, stop_price: float) -> bool:
"""
Abstracts creating stoploss orders from the logic.
Handles errors and updates the trade database object.
@ -831,14 +834,13 @@ class FreqtradeBot:
stoploss = self.edge.stoploss(pair=trade.pair) if self.edge else self.strategy.stoploss
stop_price = trade.open_rate * (1 + stoploss)
if self.create_stoploss_order(trade=trade, stop_price=stop_price, rate=stop_price):
if self.create_stoploss_order(trade=trade, stop_price=stop_price):
trade.stoploss_last_update = datetime.now()
return False
# If stoploss order is canceled for some reason we add it
if stoploss_order and stoploss_order['status'] in ('canceled', 'cancelled'):
if self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss,
rate=trade.stop_loss):
if self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss):
return False
else:
trade.stoploss_order_id = None
@ -875,8 +877,7 @@ class FreqtradeBot:
f"for pair {trade.pair}")
# Create new stoploss order
if not self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss,
rate=trade.stop_loss):
if not self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss):
logger.warning(f"Could not create trailing stoploss order "
f"for pair {trade.pair}.")
@ -921,7 +922,7 @@ class FreqtradeBot:
if not trade.open_order_id:
continue
order = self.exchange.fetch_order(trade.open_order_id, trade.pair)
except (ExchangeError, InvalidOrderException):
except (ExchangeError):
logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc())
continue
@ -954,7 +955,7 @@ class FreqtradeBot:
for trade in Trade.get_open_order_trades():
try:
order = self.exchange.fetch_order(trade.open_order_id, trade.pair)
except (DependencyException, InvalidOrderException):
except (ExchangeError):
logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc())
continue
@ -976,6 +977,12 @@ class FreqtradeBot:
reason = constants.CANCEL_REASON['TIMEOUT']
corder = self.exchange.cancel_order_with_result(trade.open_order_id, trade.pair,
trade.amount)
# Avoid race condition where the order could not be cancelled coz its already filled.
# Simply bailing here is the only safe way - as this order will then be
# handled in the next iteration.
if corder.get('status') not in ('canceled', 'closed'):
logger.warning(f"Order {trade.open_order_id} for {trade.pair} not cancelled.")
return False
else:
# Order was cancelled already, so we can reuse the existing dict
corder = order
@ -984,7 +991,7 @@ class FreqtradeBot:
logger.info('Buy order %s for %s.', reason, trade)
# Using filled to determine the filled amount
filled_amount = safe_value_fallback(corder, order, 'filled', 'filled')
filled_amount = safe_value_fallback2(corder, order, 'filled', 'filled')
if isclose(filled_amount, 0.0, abs_tol=constants.MATH_CLOSE_PREC):
logger.info('Buy order fully cancelled. Removing %s from database.', trade)
@ -1249,7 +1256,8 @@ class FreqtradeBot:
# Try update amount (binance-fix)
try:
new_amount = self.get_real_amount(trade, order, order_amount)
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
if not isclose(safe_value_fallback(order, 'filled', 'amount'), new_amount,
abs_tol=constants.MATH_CLOSE_PREC):
order['amount'] = new_amount
order.pop('filled', None)
trade.recalc_open_trade_price()
@ -1295,7 +1303,7 @@ class FreqtradeBot:
"""
# Init variables
if order_amount is None:
order_amount = order['amount']
order_amount = safe_value_fallback(order, 'filled', 'amount')
# Only run for closed orders
if trade.fee_updated(order.get('side', '')) or order['status'] == 'open':
return order_amount

View File

@ -1,14 +1,18 @@
import logging
import sys
from logging import Formatter
from logging.handlers import RotatingFileHandler, SysLogHandler
from typing import Any, Dict, List
from logging.handlers import (BufferingHandler, RotatingFileHandler,
SysLogHandler)
from typing import Any, Dict
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
LOGFORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
# Initialize bufferhandler - will be used for /log endpoints
bufferHandler = BufferingHandler(1000)
bufferHandler.setFormatter(Formatter(LOGFORMAT))
def _set_loggers(verbosity: int = 0, api_verbosity: str = 'info') -> None:
@ -33,17 +37,31 @@ def _set_loggers(verbosity: int = 0, api_verbosity: str = 'info') -> None:
)
def setup_logging_pre() -> None:
"""
Early setup for logging.
Uses INFO loglevel and only the Streamhandler.
Early messages (before proper logging setup) will therefore only be sent to additional
logging handlers after the real initialization, because we don't know which
ones the user desires beforehand.
"""
logging.basicConfig(
level=logging.INFO,
format=LOGFORMAT,
handlers=[logging.StreamHandler(sys.stderr), bufferHandler]
)
def setup_logging(config: Dict[str, Any]) -> None:
"""
Process -v/--verbose, --logfile options
"""
# Log level
verbosity = config['verbosity']
# Log to stderr
log_handlers: List[logging.Handler] = [logging.StreamHandler(sys.stderr)]
logging.root.addHandler(bufferHandler)
logfile = config.get('logfile')
if logfile:
s = logfile.split(':')
if s[0] == 'syslog':
@ -58,28 +76,27 @@ def setup_logging(config: Dict[str, Any]) -> None:
# to perform reduction of repeating messages if this is set in the
# syslog config. The messages should be equal for this.
handler.setFormatter(Formatter('%(name)s - %(levelname)s - %(message)s'))
log_handlers.append(handler)
logging.root.addHandler(handler)
elif s[0] == 'journald':
try:
from systemd.journal import JournaldLogHandler
except ImportError:
raise OperationalException("You need the systemd python package be installed in "
"order to use logging to journald.")
handler = JournaldLogHandler()
handler_jd = JournaldLogHandler()
# No datetime field for logging into journald, to allow syslog
# to perform reduction of repeating messages if this is set in the
# syslog config. The messages should be equal for this.
handler.setFormatter(Formatter('%(name)s - %(levelname)s - %(message)s'))
log_handlers.append(handler)
handler_jd.setFormatter(Formatter('%(name)s - %(levelname)s - %(message)s'))
logging.root.addHandler(handler_jd)
else:
log_handlers.append(RotatingFileHandler(logfile,
maxBytes=1024 * 1024, # 1Mb
backupCount=10))
handler_rf = RotatingFileHandler(logfile,
maxBytes=1024 * 1024 * 10, # 10Mb
backupCount=10)
handler_rf.setFormatter(Formatter(LOGFORMAT))
logging.root.addHandler(handler_rf)
logging.basicConfig(
level=logging.INFO if verbosity < 1 else logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=log_handlers
)
logging.root.setLevel(logging.INFO if verbosity < 1 else logging.DEBUG)
_set_loggers(verbosity, config.get('api_server', {}).get('verbosity', 'info'))
logger.info('Verbosity set to %s', verbosity)

View File

@ -3,18 +3,17 @@
Main Freqtrade bot script.
Read the documentation to know what cli arguments you need.
"""
from freqtrade.exceptions import FreqtradeException, OperationalException
import logging
import sys
from typing import Any, List
# check min. python version
if sys.version_info < (3, 6):
sys.exit("Freqtrade requires Python version >= 3.6")
# flake8: noqa E402
import logging
from typing import Any, List
from freqtrade.commands import Arguments
from freqtrade.exceptions import FreqtradeException, OperationalException
from freqtrade.loggers import setup_logging_pre
logger = logging.getLogger('freqtrade')
@ -28,6 +27,7 @@ def main(sysargv: List[str] = None) -> None:
return_code: Any = 1
try:
setup_logging_pre()
arguments = Arguments(sysargv)
args = arguments.get_parsed_arg()

View File

@ -134,7 +134,21 @@ def round_dict(d, n):
return {k: (round(v, n) if isinstance(v, float) else v) for k, v in d.items()}
def safe_value_fallback(dict1: dict, dict2: dict, key1: str, key2: str, default_value=None):
def safe_value_fallback(obj: dict, key1: str, key2: str, default_value=None):
"""
Search a value in obj, return this if it's not None.
Then search key2 in obj - return that if it's not none - then use default_value.
Else falls back to None.
"""
if key1 in obj and obj[key1] is not None:
return obj[key1]
else:
if key2 in obj and obj[key2] is not None:
return obj[key2]
return default_value
def safe_value_fallback2(dict1: dict, dict2: dict, key1: str, key2: str, default_value=None):
"""
Search a value in dict1, return this if it's not None.
Fall back to dict2 - return key2 from dict2 if it's not None.

View File

@ -13,6 +13,7 @@ from pandas import DataFrame
from freqtrade.configuration import (TimeRange, remove_credentials,
validate_config_consistency)
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.data import history
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider
@ -20,11 +21,10 @@ from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.optimize.optimize_reports import (generate_backtest_stats,
show_backtest_results,
store_backtest_result)
store_backtest_stats)
from freqtrade.pairlist.pairlistmanager import PairListManager
from freqtrade.persistence import Trade
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode
from freqtrade.strategy.interface import IStrategy, SellCheckTuple, SellType
logger = logging.getLogger(__name__)
@ -37,14 +37,15 @@ class BacktestResult(NamedTuple):
pair: str
profit_percent: float
profit_abs: float
open_time: datetime
close_time: datetime
open_index: int
close_index: int
open_date: datetime
open_rate: float
open_fee: float
close_date: datetime
close_rate: float
close_fee: float
amount: float
trade_duration: float
open_at_end: bool
open_rate: float
close_rate: float
sell_reason: SellType
@ -65,9 +66,8 @@ class Backtesting:
self.strategylist: List[IStrategy] = []
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
if self.config.get('runmode') != RunMode.HYPEROPT:
self.dataprovider = DataProvider(self.config, self.exchange)
IStrategy.dp = self.dataprovider
dataprovider = DataProvider(self.config, self.exchange)
IStrategy.dp = dataprovider
if self.config.get('strategy_list', None):
for strat in list(self.config['strategy_list']):
@ -137,10 +137,10 @@ class Backtesting:
min_date, max_date = history.get_timerange(data)
logger.info(
'Loading data from %s up to %s (%s days)..',
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
)
logger.info(f'Loading data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(max_date - min_date).days} days)..')
# Adjust startts forward if not enough data is available
timerange.adjust_start_if_necessary(timeframe_to_seconds(self.timeframe),
self.required_startup, min_date)
@ -225,7 +225,7 @@ class Backtesting:
open_rate=buy_row.open,
open_date=buy_row.date,
stake_amount=stake_amount,
amount=stake_amount / buy_row.open,
amount=round(stake_amount / buy_row.open, 8),
fee_open=self.fee,
fee_close=self.fee,
is_open=True,
@ -246,14 +246,15 @@ class Backtesting:
return BacktestResult(pair=pair,
profit_percent=trade.calc_profit_ratio(rate=closerate),
profit_abs=trade.calc_profit(rate=closerate),
open_time=buy_row.date,
close_time=sell_row.date,
trade_duration=trade_dur,
open_index=buy_row.Index,
close_index=sell_row.Index,
open_at_end=False,
open_date=buy_row.date,
open_rate=buy_row.open,
open_fee=self.fee,
close_date=sell_row.date,
close_rate=closerate,
close_fee=self.fee,
amount=trade.amount,
trade_duration=trade_dur,
open_at_end=False,
sell_reason=sell.sell_type
)
if partial_ohlcv:
@ -262,15 +263,16 @@ class Backtesting:
bt_res = BacktestResult(pair=pair,
profit_percent=trade.calc_profit_ratio(rate=sell_row.open),
profit_abs=trade.calc_profit(rate=sell_row.open),
open_time=buy_row.date,
close_time=sell_row.date,
open_date=buy_row.date,
open_rate=buy_row.open,
open_fee=self.fee,
close_date=sell_row.date,
close_rate=sell_row.open,
close_fee=self.fee,
amount=trade.amount,
trade_duration=int((
sell_row.date - buy_row.date).total_seconds() // 60),
open_index=buy_row.Index,
close_index=sell_row.Index,
open_at_end=True,
open_rate=buy_row.open,
close_rate=sell_row.open,
sell_reason=SellType.FORCE_SELL
)
logger.debug(f"{pair} - Force selling still open trade, "
@ -356,8 +358,8 @@ class Backtesting:
if trade_entry:
logger.debug(f"{pair} - Locking pair till "
f"close_time={trade_entry.close_time}")
lock_pair_until[pair] = trade_entry.close_time
f"close_date={trade_entry.close_date}")
lock_pair_until[pair] = trade_entry.close_date
trades.append(trade_entry)
else:
# Set lock_pair_until to end of testing period if trade could not be closed
@ -400,10 +402,9 @@ class Backtesting:
preprocessed[pair] = trim_dataframe(df, timerange)
min_date, max_date = history.get_timerange(preprocessed)
logger.info(
'Backtesting with data from %s up to %s (%s days)..',
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
)
logger.info(f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(max_date - min_date).days} days)..')
# Execute backtest and print results
all_results[self.strategy.get_strategy_name()] = self.backtest(
processed=preprocessed,
@ -414,8 +415,10 @@ class Backtesting:
position_stacking=position_stacking,
)
stats = generate_backtest_stats(self.config, data, all_results,
min_date=min_date, max_date=max_date)
if self.config.get('export', False):
store_backtest_result(self.config['exportfilename'], all_results)
store_backtest_stats(self.config['exportfilename'], stats)
# Show backtest results
stats = generate_backtest_stats(self.config, data, all_results)
show_backtest_results(self.config, stats)

View File

@ -4,27 +4,28 @@
This module contains the hyperopt logic
"""
import io
import locale
import logging
import random
import warnings
from math import ceil
from collections import OrderedDict
from math import ceil
from operator import itemgetter
from pathlib import Path
from pprint import pformat
from typing import Any, Dict, List, Optional
import progressbar
import rapidjson
import tabulate
from colorama import Fore, Style
from colorama import init as colorama_init
from joblib import (Parallel, cpu_count, delayed, dump, load,
wrap_non_picklable_objects)
from pandas import DataFrame, json_normalize, isna
import progressbar
import tabulate
from os import path
import io
from pandas import DataFrame, isna, json_normalize
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.history import get_timerange
from freqtrade.exceptions import OperationalException
@ -32,9 +33,11 @@ from freqtrade.misc import plural, round_dict
from freqtrade.optimize.backtesting import Backtesting
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
from freqtrade.optimize.hyperopt_loss_interface import \
IHyperOptLoss # noqa: F401
from freqtrade.resolvers.hyperopt_resolver import (HyperOptLossResolver,
HyperOptResolver)
from freqtrade.strategy import IStrategy
# Suppress scikit-learn FutureWarnings from skopt
with warnings.catch_warnings():
@ -312,11 +315,16 @@ class Hyperopt:
trials = json_normalize(results, max_level=1)
trials['Best'] = ''
if 'results_metrics.winsdrawslosses' not in trials.columns:
# Ensure compatibility with older versions of hyperopt results
trials['results_metrics.winsdrawslosses'] = 'N/A'
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
'results_metrics.winsdrawslosses',
'results_metrics.avg_profit', 'results_metrics.total_profit',
'results_metrics.profit', 'results_metrics.duration',
'loss', 'is_initial_point', 'is_best']]
trials.columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Total profit',
trials.columns = ['Best', 'Epoch', 'Trades', 'W/D/L', 'Avg profit', 'Total profit',
'Profit', 'Avg duration', 'Objective', 'is_initial_point', 'is_best']
trials['is_profit'] = False
trials.loc[trials['is_initial_point'], 'Best'] = '* '
@ -390,7 +398,7 @@ class Hyperopt:
return
# Verification for overwrite
if path.isfile(csv_file):
if Path(csv_file).is_file():
logger.error(f"CSV file already exists: {csv_file}")
return
@ -558,9 +566,17 @@ class Hyperopt:
}
def _calculate_results_metrics(self, backtesting_results: DataFrame) -> Dict:
wins = len(backtesting_results[backtesting_results.profit_percent > 0])
draws = len(backtesting_results[backtesting_results.profit_percent == 0])
losses = len(backtesting_results[backtesting_results.profit_percent < 0])
return {
'trade_count': len(backtesting_results.index),
'wins': wins,
'draws': draws,
'losses': losses,
'winsdrawslosses': f"{wins}/{draws}/{losses}",
'avg_profit': backtesting_results.profit_percent.mean() * 100.0,
'median_profit': backtesting_results.profit_percent.median() * 100.0,
'total_profit': backtesting_results.profit_abs.sum(),
'profit': backtesting_results.profit_percent.sum() * 100.0,
'duration': backtesting_results.trade_duration.mean(),
@ -572,7 +588,10 @@ class Hyperopt:
"""
stake_cur = self.config['stake_currency']
return (f"{results_metrics['trade_count']:6d} trades. "
f"{results_metrics['wins']}/{results_metrics['draws']}"
f"/{results_metrics['losses']} Wins/Draws/Losses. "
f"Avg profit {results_metrics['avg_profit']: 6.2f}%. "
f"Median profit {results_metrics['median_profit']: 6.2f}%. "
f"Total profit {results_metrics['total_profit']: 11.8f} {stake_cur} "
f"({results_metrics['profit']: 7.2f}\N{GREEK CAPITAL LETTER SIGMA}%). "
f"Avg duration {results_metrics['duration']:5.1f} min."
@ -625,15 +644,17 @@ class Hyperopt:
preprocessed[pair] = trim_dataframe(df, timerange)
min_date, max_date = get_timerange(data)
logger.info(
'Hyperopting with data from %s up to %s (%s days)..',
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
)
logger.info(f'Hyperopting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(max_date - min_date).days} days)..')
dump(preprocessed, self.data_pickle_file)
# We don't need exchange instance anymore while running hyperopt
self.backtesting.exchange = None # type: ignore
self.backtesting.pairlists = None # type: ignore
self.backtesting.strategy.dp = None # type: ignore
IStrategy.dp = None # type: ignore
self.epochs = self.load_previous_results(self.results_file)
@ -644,6 +665,10 @@ class Hyperopt:
self.dimensions: List[Dimension] = self.hyperopt_space()
self.opt = self.get_optimizer(self.dimensions, config_jobs)
if self.print_colorized:
colorama_init(autoreset=True)
try:
with Parallel(n_jobs=config_jobs) as parallel:
jobs = parallel._effective_n_jobs()

View File

@ -43,7 +43,7 @@ class SharpeHyperOptLossDaily(IHyperOptLoss):
normalize=True)
sum_daily = (
results.resample(resample_freq, on='close_time').agg(
results.resample(resample_freq, on='close_date').agg(
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
)

View File

@ -45,7 +45,7 @@ class SortinoHyperOptLossDaily(IHyperOptLoss):
normalize=True)
sum_daily = (
results.resample(resample_freq, on='close_time').agg(
results.resample(resample_freq, on='close_date').agg(
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
)

View File

@ -1,46 +1,40 @@
import logging
from datetime import timedelta
from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Any, Dict, List
from arrow import Arrow
from pandas import DataFrame
from numpy import int64
from tabulate import tabulate
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN
from freqtrade.data.btanalysis import calculate_max_drawdown, calculate_market_change
from freqtrade.misc import file_dump_json
logger = logging.getLogger(__name__)
def store_backtest_result(recordfilename: Path, all_results: Dict[str, DataFrame]) -> None:
def store_backtest_stats(recordfilename: Path, stats: Dict[str, DataFrame]) -> None:
"""
Stores backtest results to file (one file per strategy)
:param recordfilename: Destination filename
:param all_results: Dict of Dataframes, one results dataframe per strategy
Stores backtest results
:param recordfilename: Path object, which can either be a filename or a directory.
Filenames will be appended with a timestamp right before the suffix
while for diectories, <directory>/backtest-result-<datetime>.json will be used as filename
:param stats: Dataframe containing the backtesting statistics
"""
for strategy, results in all_results.items():
records = backtest_result_to_list(results)
if recordfilename.is_dir():
filename = (recordfilename /
f'backtest-result-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}.json')
else:
filename = Path.joinpath(
recordfilename.parent,
f'{recordfilename.stem}-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}'
).with_suffix(recordfilename.suffix)
file_dump_json(filename, stats)
if records:
filename = recordfilename
if len(all_results) > 1:
# Inject strategy to filename
filename = Path.joinpath(
recordfilename.parent,
f'{recordfilename.stem}-{strategy}').with_suffix(recordfilename.suffix)
logger.info(f'Dumping backtest results to {filename}')
file_dump_json(filename, records)
def backtest_result_to_list(results: DataFrame) -> List[List]:
"""
Converts a list of Backtest-results to list
:param results: Dataframe containing results for one strategy
:return: List of Lists containing the trades
"""
return [[t.pair, t.profit_percent, t.open_time.timestamp(),
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value]
for index, t in results.iterrows()]
latest_filename = Path.joinpath(filename.parent, LAST_BT_RESULT_FN)
file_dump_json(latest_filename, {'latest_backtest': str(filename.name)})
def _get_line_floatfmt() -> List[str]:
@ -66,11 +60,12 @@ def _generate_result_line(result: DataFrame, max_open_trades: int, first_column:
return {
'key': first_column,
'trades': len(result),
'profit_mean': result['profit_percent'].mean(),
'profit_mean_pct': result['profit_percent'].mean() * 100.0,
'profit_mean': result['profit_percent'].mean() if len(result) > 0 else 0.0,
'profit_mean_pct': result['profit_percent'].mean() * 100.0 if len(result) > 0 else 0.0,
'profit_sum': result['profit_percent'].sum(),
'profit_sum_pct': result['profit_percent'].sum() * 100.0,
'profit_total_abs': result['profit_abs'].sum(),
'profit_total': result['profit_percent'].sum() / max_open_trades,
'profit_total_pct': result['profit_percent'].sum() * 100.0 / max_open_trades,
'duration_avg': str(timedelta(
minutes=round(result['trade_duration'].mean()))
@ -141,7 +136,7 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
'profit_sum': profit_sum,
'profit_sum_pct': round(profit_sum * 100, 2),
'profit_total_abs': result['profit_abs'].sum(),
'profit_pct_total': profit_percent_tot,
'profit_total_pct': profit_percent_tot,
}
)
return tabular_data
@ -189,18 +184,58 @@ def generate_edge_table(results: dict) -> str:
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
if len(results) == 0:
return {
'backtest_best_day': 0,
'backtest_worst_day': 0,
'winning_days': 0,
'draw_days': 0,
'losing_days': 0,
'winner_holding_avg': timedelta(),
'loser_holding_avg': timedelta(),
}
daily_profit = results.resample('1d', on='close_date')['profit_percent'].sum()
worst = min(daily_profit)
best = max(daily_profit)
winning_days = sum(daily_profit > 0)
draw_days = sum(daily_profit == 0)
losing_days = sum(daily_profit < 0)
winning_trades = results.loc[results['profit_percent'] > 0]
losing_trades = results.loc[results['profit_percent'] < 0]
return {
'backtest_best_day': best,
'backtest_worst_day': worst,
'winning_days': winning_days,
'draw_days': draw_days,
'losing_days': losing_days,
'winner_holding_avg': (timedelta(minutes=round(winning_trades['trade_duration'].mean()))
if not winning_trades.empty else timedelta()),
'loser_holding_avg': (timedelta(minutes=round(losing_trades['trade_duration'].mean()))
if not losing_trades.empty else timedelta()),
}
def generate_backtest_stats(config: Dict, btdata: Dict[str, DataFrame],
all_results: Dict[str, DataFrame]) -> Dict[str, Any]:
all_results: Dict[str, DataFrame],
min_date: Arrow, max_date: Arrow
) -> Dict[str, Any]:
"""
:param config: Configuration object used for backtest
:param btdata: Backtest data
:param all_results: backtest result - dictionary with { Strategy: results}.
:param min_date: Backtest start date
:param max_date: Backtest end date
:return:
Dictionary containing results per strategy and a stratgy summary.
"""
stake_currency = config['stake_currency']
max_open_trades = config['max_open_trades']
result: Dict[str, Any] = {'strategy': {}}
market_change = calculate_market_change(btdata, 'close')
for strategy, results in all_results.items():
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
@ -212,14 +247,58 @@ def generate_backtest_stats(config: Dict, btdata: Dict[str, DataFrame],
max_open_trades=max_open_trades,
results=results.loc[results['open_at_end']],
skip_nan=True)
daily_stats = generate_daily_stats(results)
results['open_timestamp'] = results['open_date'].astype(int64) // 1e6
results['close_timestamp'] = results['close_date'].astype(int64) // 1e6
backtest_days = (max_date - min_date).days
strat_stats = {
'trades': backtest_result_to_list(results),
'trades': results.to_dict(orient='records'),
'results_per_pair': pair_results,
'sell_reason_summary': sell_reason_stats,
'left_open_trades': left_open_results,
}
'total_trades': len(results),
'profit_mean': results['profit_percent'].mean() if len(results) > 0 else 0,
'profit_total': results['profit_percent'].sum(),
'profit_total_abs': results['profit_abs'].sum(),
'backtest_start': min_date.datetime,
'backtest_start_ts': min_date.timestamp * 1000,
'backtest_end': max_date.datetime,
'backtest_end_ts': max_date.timestamp * 1000,
'backtest_days': backtest_days,
'trades_per_day': round(len(results) / backtest_days, 2) if backtest_days > 0 else 0,
'market_change': market_change,
'pairlist': list(btdata.keys()),
'stake_amount': config['stake_amount'],
'stake_currency': config['stake_currency'],
'max_open_trades': (config['max_open_trades']
if config['max_open_trades'] != float('inf') else -1),
'timeframe': config['timeframe'],
**daily_stats,
}
result['strategy'][strategy] = strat_stats
try:
max_drawdown, drawdown_start, drawdown_end = calculate_max_drawdown(
results, value_col='profit_percent')
strat_stats.update({
'max_drawdown': max_drawdown,
'drawdown_start': drawdown_start,
'drawdown_start_ts': drawdown_start.timestamp() * 1000,
'drawdown_end': drawdown_end,
'drawdown_end_ts': drawdown_end.timestamp() * 1000,
})
except ValueError:
strat_stats.update({
'max_drawdown': 0.0,
'drawdown_start': datetime(1970, 1, 1, tzinfo=timezone.utc),
'drawdown_start_ts': 0,
'drawdown_end': datetime(1970, 1, 1, tzinfo=timezone.utc),
'drawdown_end_ts': 0,
})
strategy_results = generate_strategy_metrics(stake_currency=stake_currency,
max_open_trades=max_open_trades,
all_results=all_results)
@ -273,7 +352,7 @@ def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_curren
output = [[
t['sell_reason'], t['trades'], t['wins'], t['draws'], t['losses'],
t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_pct_total'],
t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_total_pct'],
] for t in sell_reason_stats]
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
@ -298,6 +377,35 @@ def text_table_strategy(strategy_results, stake_currency: str) -> str:
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def text_table_add_metrics(strat_results: Dict) -> str:
if len(strat_results['trades']) > 0:
min_trade = min(strat_results['trades'], key=lambda x: x['open_date'])
metrics = [
('Backtesting from', strat_results['backtest_start'].strftime(DATETIME_PRINT_FORMAT)),
('Backtesting to', strat_results['backtest_end'].strftime(DATETIME_PRINT_FORMAT)),
('Total trades', strat_results['total_trades']),
('First trade', min_trade['open_date'].strftime(DATETIME_PRINT_FORMAT)),
('First trade Pair', min_trade['pair']),
('Total Profit %', f"{round(strat_results['profit_total'] * 100, 2)}%"),
('Trades per day', strat_results['trades_per_day']),
('Best day', f"{round(strat_results['backtest_best_day'] * 100, 2)}%"),
('Worst day', f"{round(strat_results['backtest_worst_day'] * 100, 2)}%"),
('Days win/draw/lose', f"{strat_results['winning_days']} / "
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
('', ''), # Empty line to improve readability
('Max Drawdown', f"{round(strat_results['max_drawdown'] * 100, 2)}%"),
('Drawdown Start', strat_results['drawdown_start'].strftime(DATETIME_PRINT_FORMAT)),
('Drawdown End', strat_results['drawdown_end'].strftime(DATETIME_PRINT_FORMAT)),
('Market change', f"{round(strat_results['market_change'] * 100, 2)}%"),
]
return tabulate(metrics, headers=["Metric", "Value"], tablefmt="orgtbl")
else:
return ''
def show_backtest_results(config: Dict, backtest_stats: Dict):
stake_currency = config['stake_currency']
@ -312,15 +420,21 @@ def show_backtest_results(config: Dict, backtest_stats: Dict):
table = text_table_sell_reason(sell_reason_stats=results['sell_reason_summary'],
stake_currency=stake_currency)
if isinstance(table, str):
if isinstance(table, str) and len(table) > 0:
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
if isinstance(table, str):
if isinstance(table, str) and len(table) > 0:
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
if isinstance(table, str):
table = text_table_add_metrics(results)
if isinstance(table, str) and len(table) > 0:
print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '='))
print(table)
if isinstance(table, str) and len(table) > 0:
print('=' * len(table.splitlines()[0]))
print()

View File

@ -26,12 +26,11 @@ class AgeFilter(IPairList):
self._min_days_listed = pairlistconfig.get('min_days_listed', 10)
if self._min_days_listed < 1:
raise OperationalException("AgeFilter requires min_days_listed must be >= 1")
raise OperationalException("AgeFilter requires min_days_listed to be >= 1")
if self._min_days_listed > exchange.ohlcv_candle_limit:
raise OperationalException("AgeFilter requires min_days_listed must not exceed "
raise OperationalException("AgeFilter requires min_days_listed to not exceed "
"exchange max request size "
f"({exchange.ohlcv_candle_limit})")
self._enabled = self._min_days_listed >= 1
@property
def needstickers(self) -> bool:

View File

@ -162,6 +162,11 @@ class IPairList(ABC):
f"{self._exchange.name}. Removing it from whitelist..")
continue
if not self._exchange.market_is_tradable(markets[pair]):
logger.warning(f"Pair {pair} is not tradable with Freqtrade."
"Removing it from whitelist..")
continue
if self._exchange.get_pair_quote_currency(pair) != self._config['stake_currency']:
logger.warning(f"Pair {pair} is not compatible with your stake currency "
f"{self._config['stake_currency']}. Removing it from whitelist..")

View File

@ -4,6 +4,7 @@ Price pair list filter
import logging
from typing import Any, Dict
from freqtrade.exceptions import OperationalException
from freqtrade.pairlist.IPairList import IPairList
@ -18,11 +19,17 @@ class PriceFilter(IPairList):
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
self._low_price_ratio = pairlistconfig.get('low_price_ratio', 0)
if self._low_price_ratio < 0:
raise OperationalException("PriceFilter requires low_price_ratio to be >= 0")
self._min_price = pairlistconfig.get('min_price', 0)
if self._min_price < 0:
raise OperationalException("PriceFilter requires min_price to be >= 0")
self._max_price = pairlistconfig.get('max_price', 0)
self._enabled = ((self._low_price_ratio != 0) or
(self._min_price != 0) or
(self._max_price != 0))
if self._max_price < 0:
raise OperationalException("PriceFilter requires max_price to be >= 0")
self._enabled = ((self._low_price_ratio > 0) or
(self._min_price > 0) or
(self._max_price > 0))
@property
def needstickers(self) -> bool:

View File

@ -2,7 +2,7 @@
This module contains the class to persist trades into SQLite
"""
import logging
from datetime import datetime
from datetime import datetime, timezone
from decimal import Decimal
from typing import Any, Dict, List, Optional
@ -17,6 +17,7 @@ from sqlalchemy.orm.session import sessionmaker
from sqlalchemy.pool import StaticPool
from freqtrade.exceptions import OperationalException
from freqtrade.misc import safe_value_fallback
logger = logging.getLogger(__name__)
@ -86,7 +87,7 @@ def check_migrate(engine) -> None:
logger.debug(f'trying {table_back_name}')
# Check for latest column
if not has_column(cols, 'timeframe'):
if not has_column(cols, 'amount_requested'):
logger.info(f'Running database migration - backup available as {table_back_name}')
fee_open = get_column_def(cols, 'fee_open', 'fee')
@ -119,6 +120,7 @@ def check_migrate(engine) -> None:
cols, 'close_profit_abs',
f"(amount * close_rate * (1 - {fee_close})) - {open_trade_price}")
sell_order_status = get_column_def(cols, 'sell_order_status', 'null')
amount_requested = get_column_def(cols, 'amount_requested', 'amount')
# Schema migration necessary
engine.execute(f"alter table trades rename to {table_back_name}")
@ -134,7 +136,7 @@ def check_migrate(engine) -> None:
fee_open, fee_open_cost, fee_open_currency,
fee_close, fee_close_cost, fee_open_currency, open_rate,
open_rate_requested, close_rate, close_rate_requested, close_profit,
stake_amount, amount, open_date, close_date, open_order_id,
stake_amount, amount, amount_requested, open_date, close_date, open_order_id,
stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct,
stoploss_order_id, stoploss_last_update,
max_rate, min_rate, sell_reason, sell_order_status, strategy,
@ -153,7 +155,7 @@ def check_migrate(engine) -> None:
{fee_close_cost} fee_close_cost, {fee_close_currency} fee_close_currency,
open_rate, {open_rate_requested} open_rate_requested, close_rate,
{close_rate_requested} close_rate_requested, close_profit,
stake_amount, amount, open_date, close_date, open_order_id,
stake_amount, amount, {amount_requested}, open_date, close_date, open_order_id,
{stop_loss} stop_loss, {stop_loss_pct} stop_loss_pct,
{initial_stop_loss} initial_stop_loss,
{initial_stop_loss_pct} initial_stop_loss_pct,
@ -215,6 +217,7 @@ class Trade(_DECL_BASE):
close_profit_abs = Column(Float)
stake_amount = Column(Float, nullable=False)
amount = Column(Float)
amount_requested = Column(Float)
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
close_date = Column(DateTime)
open_order_id = Column(String)
@ -256,6 +259,7 @@ class Trade(_DECL_BASE):
'is_open': self.is_open,
'exchange': self.exchange,
'amount': round(self.amount, 8),
'amount_requested': round(self.amount_requested, 8) if self.amount_requested else None,
'stake_amount': round(self.stake_amount, 8),
'strategy': self.strategy,
'ticker_interval': self.timeframe, # DEPRECATED
@ -270,16 +274,17 @@ class Trade(_DECL_BASE):
'open_date_hum': arrow.get(self.open_date).humanize(),
'open_date': self.open_date.strftime("%Y-%m-%d %H:%M:%S"),
'open_timestamp': int(self.open_date.timestamp() * 1000),
'open_timestamp': int(self.open_date.replace(tzinfo=timezone.utc).timestamp() * 1000),
'open_rate': self.open_rate,
'open_rate_requested': self.open_rate_requested,
'open_trade_price': self.open_trade_price,
'open_trade_price': round(self.open_trade_price, 8),
'close_date_hum': (arrow.get(self.close_date).humanize()
if self.close_date else None),
'close_date': (self.close_date.strftime("%Y-%m-%d %H:%M:%S")
if self.close_date else None),
'close_timestamp': int(self.close_date.timestamp() * 1000) if self.close_date else None,
'close_timestamp': int(self.close_date.replace(
tzinfo=timezone.utc).timestamp() * 1000) if self.close_date else None,
'close_rate': self.close_rate,
'close_rate_requested': self.close_rate_requested,
'close_profit': self.close_profit,
@ -294,8 +299,8 @@ class Trade(_DECL_BASE):
'stoploss_order_id': self.stoploss_order_id,
'stoploss_last_update': (self.stoploss_last_update.strftime("%Y-%m-%d %H:%M:%S")
if self.stoploss_last_update else None),
'stoploss_last_update_timestamp': (int(self.stoploss_last_update.timestamp() * 1000)
if self.stoploss_last_update else None),
'stoploss_last_update_timestamp': int(self.stoploss_last_update.replace(
tzinfo=timezone.utc).timestamp() * 1000) if self.stoploss_last_update else None,
'initial_stop_loss': self.initial_stop_loss, # Deprecated - should not be used
'initial_stop_loss_abs': self.initial_stop_loss,
'initial_stop_loss_ratio': (self.initial_stop_loss_pct
@ -365,20 +370,20 @@ class Trade(_DECL_BASE):
"""
order_type = order['type']
# Ignore open and cancelled orders
if order['status'] == 'open' or order['price'] is None:
if order['status'] == 'open' or safe_value_fallback(order, 'average', 'price') is None:
return
logger.info('Updating trade (id=%s) ...', self.id)
if order_type in ('market', 'limit') and order['side'] == 'buy':
# Update open rate and actual amount
self.open_rate = Decimal(order['price'])
self.amount = Decimal(order.get('filled', order['amount']))
self.open_rate = Decimal(safe_value_fallback(order, 'average', 'price'))
self.amount = Decimal(safe_value_fallback(order, 'filled', 'amount'))
self.recalc_open_trade_price()
logger.info('%s_BUY has been fulfilled for %s.', order_type.upper(), self)
self.open_order_id = None
elif order_type in ('market', 'limit') and order['side'] == 'sell':
self.close(order['price'])
self.close(safe_value_fallback(order, 'average', 'price'))
logger.info('%s_SELL has been fulfilled for %s.', order_type.upper(), self)
elif order_type in ('stop_loss_limit', 'stop-loss', 'stop'):
self.stoploss_order_id = None

View File

@ -8,7 +8,8 @@ from freqtrade.configuration import TimeRange
from freqtrade.data.btanalysis import (calculate_max_drawdown,
combine_dataframes_with_mean,
create_cum_profit,
extract_trades_of_period, load_trades)
extract_trades_of_period,
load_trades)
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import load_data
@ -37,15 +38,15 @@ def init_plotscript(config):
"""
if "pairs" in config:
pairs = config["pairs"]
pairs = config['pairs']
else:
pairs = config["exchange"]["pair_whitelist"]
pairs = config['exchange']['pair_whitelist']
# Set timerange to use
timerange = TimeRange.parse_timerange(config.get("timerange"))
timerange = TimeRange.parse_timerange(config.get('timerange'))
data = load_data(
datadir=config.get("datadir"),
datadir=config.get('datadir'),
pairs=pairs,
timeframe=config.get('timeframe', '5m'),
timerange=timerange,
@ -53,19 +54,22 @@ def init_plotscript(config):
)
no_trades = False
filename = config.get('exportfilename')
if config.get('no_trades', False):
no_trades = True
elif not config['exportfilename'].is_file() and config['trade_source'] == 'file':
logger.warning("Backtest file is missing skipping trades.")
no_trades = True
elif config['trade_source'] == 'file':
if not filename.is_dir() and not filename.is_file():
logger.warning("Backtest file is missing skipping trades.")
no_trades = True
trades = load_trades(
config['trade_source'],
db_url=config.get('db_url'),
exportfilename=config.get('exportfilename'),
no_trades=no_trades
exportfilename=filename,
no_trades=no_trades,
strategy=config.get('strategy'),
)
trades = trim_dataframe(trades, timerange, 'open_time')
trades = trim_dataframe(trades, timerange, 'open_date')
return {"ohlcv": data,
"trades": trades,
@ -165,10 +169,11 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
if trades is not None and len(trades) > 0:
# Create description for sell summarizing the trade
trades['desc'] = trades.apply(lambda row: f"{round(row['profit_percent'] * 100, 1)}%, "
f"{row['sell_reason']}, {row['duration']} min",
f"{row['sell_reason']}, "
f"{row['trade_duration']} min",
axis=1)
trade_buys = go.Scatter(
x=trades["open_time"],
x=trades["open_date"],
y=trades["open_rate"],
mode='markers',
name='Trade buy',
@ -183,7 +188,7 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
)
trade_sells = go.Scatter(
x=trades.loc[trades['profit_percent'] > 0, "close_time"],
x=trades.loc[trades['profit_percent'] > 0, "close_date"],
y=trades.loc[trades['profit_percent'] > 0, "close_rate"],
text=trades.loc[trades['profit_percent'] > 0, "desc"],
mode='markers',
@ -196,7 +201,7 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
)
)
trade_sells_loss = go.Scatter(
x=trades.loc[trades['profit_percent'] <= 0, "close_time"],
x=trades.loc[trades['profit_percent'] <= 0, "close_date"],
y=trades.loc[trades['profit_percent'] <= 0, "close_rate"],
text=trades.loc[trades['profit_percent'] <= 0, "desc"],
mode='markers',
@ -486,13 +491,13 @@ def load_and_plot_trades(config: Dict[str, Any]):
pair=pair,
data=df_analyzed,
trades=trades_pair,
indicators1=config.get("indicators1", []),
indicators2=config.get("indicators2", []),
indicators1=config.get('indicators1', []),
indicators2=config.get('indicators2', []),
plot_config=strategy.plot_config if hasattr(strategy, 'plot_config') else {}
)
store_plot_file(fig, filename=generate_plot_filename(pair, config['timeframe']),
directory=config['user_data_dir'] / "plot")
directory=config['user_data_dir'] / 'plot')
logger.info('End of plotting process. %s plots generated', pair_counter)
@ -509,8 +514,8 @@ def plot_profit(config: Dict[str, Any]) -> None:
# Filter trades to relevant pairs
# Remove open pairs - we don't know the profit yet so can't calculate profit for these.
# Also, If only one open pair is left, then the profit-generation would fail.
trades = trades[(trades['pair'].isin(plot_elements["pairs"]))
& (~trades['close_time'].isnull())
trades = trades[(trades['pair'].isin(plot_elements['pairs']))
& (~trades['close_date'].isnull())
]
if len(trades) == 0:
raise OperationalException("No trades found, cannot generate Profit-plot without "
@ -518,7 +523,7 @@ def plot_profit(config: Dict[str, Any]) -> None:
# Create an average close price of all the pairs that were involved.
# this could be useful to gauge the overall market trend
fig = generate_profit_graph(plot_elements["pairs"], plot_elements["ohlcv"],
fig = generate_profit_graph(plot_elements['pairs'], plot_elements['ohlcv'],
trades, config.get('timeframe', '5m'))
store_plot_file(fig, filename='freqtrade-profit-plot.html',
directory=config['user_data_dir'] / "plot", auto_open=True)
directory=config['user_data_dir'] / 'plot', auto_open=True)

View File

@ -23,7 +23,7 @@ class HyperOptResolver(IResolver):
object_type = IHyperOpt
object_type_str = "Hyperopt"
user_subdir = USERPATH_HYPEROPTS
initial_search_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
initial_search_path = None
@staticmethod
def load_hyperopt(config: Dict) -> IHyperOpt:

View File

@ -16,6 +16,7 @@ from werkzeug.security import safe_str_cmp
from werkzeug.serving import make_server
from freqtrade.__init__ import __version__
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.rpc.rpc import RPC, RPCException
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
@ -32,7 +33,7 @@ class ArrowJSONEncoder(JSONEncoder):
elif isinstance(obj, date):
return obj.strftime("%Y-%m-%d")
elif isinstance(obj, datetime):
return obj.strftime("%Y-%m-%d %H:%M:%S")
return obj.strftime(DATETIME_PRINT_FORMAT)
iterable = iter(obj)
except TypeError:
pass
@ -56,7 +57,7 @@ def require_login(func: Callable[[Any, Any], Any]):
# Type should really be Callable[[ApiServer], Any], but that will create a circular dependency
def rpc_catch_errors(func: Callable[[Any], Any]):
def rpc_catch_errors(func: Callable[..., Any]):
def func_wrapper(obj, *args, **kwargs):
@ -186,6 +187,7 @@ class ApiServer(RPC):
self.app.add_url_rule(f'{BASE_URI}/count', 'count', view_func=self._count, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/daily', 'daily', view_func=self._daily, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/edge', 'edge', view_func=self._edge, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/logs', 'log', view_func=self._get_logs, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/profit', 'profit',
view_func=self._profit, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/performance', 'performance',
@ -200,6 +202,8 @@ class ApiServer(RPC):
view_func=self._ping, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/trades', 'trades',
view_func=self._trades, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/trades/<int:tradeid>', 'trades_delete',
view_func=self._trades_delete, methods=['DELETE'])
# Combined actions and infos
self.app.add_url_rule(f'{BASE_URI}/blacklist', 'blacklist', view_func=self._blacklist,
methods=['GET', 'POST'])
@ -346,6 +350,18 @@ class ApiServer(RPC):
return self.rest_dump(stats)
@require_login
@rpc_catch_errors
def _get_logs(self):
"""
Returns latest logs
get:
param:
limit: Only get a certain number of records
"""
limit = int(request.args.get('limit', 0)) or None
return self.rest_dump(self._rpc_get_logs(limit))
@require_login
@rpc_catch_errors
def _edge(self):
@ -424,6 +440,19 @@ class ApiServer(RPC):
results = self._rpc_trade_history(limit)
return self.rest_dump(results)
@require_login
@rpc_catch_errors
def _trades_delete(self, tradeid):
"""
Handler for DELETE /trades/<tradeid> endpoint.
Removes the trade from the database (tries to cancel open orders first!)
get:
param:
tradeid: Numeric trade-id assigned to the trade.
"""
result = self._rpc_delete(tradeid)
return self.rest_dump(result)
@require_login
@rpc_catch_errors
def _whitelist(self):

View File

@ -6,14 +6,14 @@ from abc import abstractmethod
from datetime import date, datetime, timedelta
from enum import Enum
from math import isnan
from typing import Any, Dict, List, Optional, Tuple
from typing import Any, Dict, List, Optional, Tuple, Union
import arrow
from numpy import NAN, mean
from freqtrade.exceptions import ExchangeError, PricingError
from freqtrade.exchange import timeframe_to_msecs, timeframe_to_minutes
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_msecs
from freqtrade.loggers import bufferHandler
from freqtrade.misc import shorten_date
from freqtrade.persistence import Trade
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
@ -158,6 +158,7 @@ class RPC:
current_profit_abs=current_profit_abs,
stoploss_current_dist=stoploss_current_dist,
stoploss_current_dist_ratio=round(stoploss_current_dist_ratio, 8),
stoploss_current_dist_pct=round(stoploss_current_dist_ratio * 100, 2),
stoploss_entry_dist=stoploss_entry_dist,
stoploss_entry_dist_ratio=round(stoploss_entry_dist_ratio, 8),
open_order='({} {} rem={:.8f})'.format(
@ -224,22 +225,20 @@ class RPC:
]).order_by(Trade.close_date).all()
curdayprofit = sum(trade.close_profit_abs for trade in trades)
profit_days[profitday] = {
'amount': f'{curdayprofit:.8f}',
'amount': curdayprofit,
'trades': len(trades)
}
data = [
{
'date': key,
'abs_profit': f'{float(value["amount"]):.8f}',
'fiat_value': '{value:.3f}'.format(
value=self._fiat_converter.convert_amount(
'abs_profit': value["amount"],
'fiat_value': self._fiat_converter.convert_amount(
value['amount'],
stake_currency,
fiat_display_currency
) if self._fiat_converter else 0,
),
'trade_count': f'{value["trades"]}',
'trade_count': value["trades"],
}
for key, value in profit_days.items()
]
@ -538,6 +537,46 @@ class RPC:
else:
return None
def _rpc_delete(self, trade_id: str) -> Dict[str, Union[str, int]]:
"""
Handler for delete <id>.
Delete the given trade and close eventually existing open orders.
"""
with self._freqtrade._sell_lock:
c_count = 0
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
if not trade:
logger.warning('delete trade: Invalid argument received')
raise RPCException('invalid argument')
# Try cancelling regular order if that exists
if trade.open_order_id:
try:
self._freqtrade.exchange.cancel_order(trade.open_order_id, trade.pair)
c_count += 1
except (ExchangeError):
pass
# cancel stoploss on exchange ...
if (self._freqtrade.strategy.order_types.get('stoploss_on_exchange')
and trade.stoploss_order_id):
try:
self._freqtrade.exchange.cancel_stoploss_order(trade.stoploss_order_id,
trade.pair)
c_count += 1
except (ExchangeError):
pass
Trade.session.delete(trade)
Trade.session.flush()
self._freqtrade.wallets.update()
return {
'result': 'success',
'trade_id': trade_id,
'result_msg': f'Deleted trade {trade_id}. Closed {c_count} open orders.',
'cancel_order_count': c_count,
}
def _rpc_performance(self) -> List[Dict[str, Any]]:
"""
Handler for performance.
@ -593,6 +632,24 @@ class RPC:
}
return res
def _rpc_get_logs(self, limit: Optional[int]) -> Dict[str, Any]:
"""Returns the last X logs"""
if limit:
buffer = bufferHandler.buffer[-limit:]
else:
buffer = bufferHandler.buffer
records = [[datetime.fromtimestamp(r.created).strftime("%Y-%m-%d %H:%M:%S"),
r.created * 1000, r.name, r.levelname,
r.message + ('\n' + r.exc_text if r.exc_text else '')]
for r in buffer]
# Log format:
# [logtime-formatted, logepoch, logger-name, loglevel, message \n + exception]
# e.g. ["2020-08-27 11:35:01", 1598520901097.9397,
# "freqtrade.worker", "INFO", "Starting worker develop"]
return {'log_count': len(records), 'logs': records}
def _rpc_edge(self) -> List[Dict[str, Any]]:
""" Returns information related to Edge """
if not self._freqtrade.edge:

View File

@ -12,6 +12,7 @@ from tabulate import tabulate
from telegram import ParseMode, ReplyKeyboardMarkup, Update
from telegram.error import NetworkError, TelegramError
from telegram.ext import CallbackContext, CommandHandler, Updater
from telegram.utils.helpers import escape_markdown
from freqtrade.__init__ import __version__
from freqtrade.rpc import RPC, RPCException, RPCMessageType
@ -94,6 +95,7 @@ class Telegram(RPC):
CommandHandler('forcesell', self._forcesell),
CommandHandler('forcebuy', self._forcebuy),
CommandHandler('trades', self._trades),
CommandHandler('delete', self._delete_trade),
CommandHandler('performance', self._performance),
CommandHandler('daily', self._daily),
CommandHandler('count', self._count),
@ -102,6 +104,7 @@ class Telegram(RPC):
CommandHandler('stopbuy', self._stopbuy),
CommandHandler('whitelist', self._whitelist),
CommandHandler('blacklist', self._blacklist),
CommandHandler('logs', self._logs),
CommandHandler('edge', self._edge),
CommandHandler('help', self._help),
CommandHandler('version', self._version),
@ -238,17 +241,18 @@ class Telegram(RPC):
("*Close Profit:* `{close_profit_pct}`"
if r['close_profit_pct'] is not None else ""),
"*Current Profit:* `{current_profit_pct:.2f}%`",
# Adding initial stoploss only if it is different from stoploss
"*Initial Stoploss:* `{initial_stop_loss:.8f}` " +
("`({initial_stop_loss_pct:.2f}%)`") if (
r['stop_loss'] != r['initial_stop_loss']
and r['initial_stop_loss_pct'] is not None) else "",
# Adding stoploss and stoploss percentage only if it is not None
"*Stoploss:* `{stop_loss:.8f}` " +
("`({stop_loss_pct:.2f}%)`" if r['stop_loss_pct'] else ""),
]
if (r['stop_loss'] != r['initial_stop_loss']
and r['initial_stop_loss_pct'] is not None):
# Adding initial stoploss only if it is different from stoploss
lines.append("*Initial Stoploss:* `{initial_stop_loss:.8f}` "
"`({initial_stop_loss_pct:.2f}%)`")
# Adding stoploss and stoploss percentage only if it is not None
lines.append("*Stoploss:* `{stop_loss:.8f}` " +
("`({stop_loss_pct:.2f}%)`" if r['stop_loss_pct'] else ""))
lines.append("*Stoploss distance:* `{stoploss_current_dist:.8f}` "
"`({stoploss_current_dist_pct:.2f}%)`")
if r['open_order']:
if r['sell_order_status']:
lines.append("*Open Order:* `{open_order}` - `{sell_order_status}`")
@ -304,8 +308,8 @@ class Telegram(RPC):
)
stats_tab = tabulate(
[[day['date'],
f"{day['abs_profit']} {stats['stake_currency']}",
f"{day['fiat_value']} {stats['fiat_display_currency']}",
f"{day['abs_profit']:.8f} {stats['stake_currency']}",
f"{day['fiat_value']:.3f} {stats['fiat_display_currency']}",
f"{day['trade_count']} trades"] for day in stats['data']],
headers=[
'Day',
@ -533,6 +537,27 @@ class Telegram(RPC):
except RPCException as e:
self._send_msg(str(e))
@authorized_only
def _delete_trade(self, update: Update, context: CallbackContext) -> None:
"""
Handler for /delete <id>.
Delete the given trade
:param bot: telegram bot
:param update: message update
:return: None
"""
trade_id = context.args[0] if len(context.args) > 0 else None
try:
msg = self._rpc_delete(trade_id)
self._send_msg((
'`{result_msg}`\n'
'Please make sure to take care of this asset on the exchange manually.'
).format(**msg))
except RPCException as e:
self._send_msg(str(e))
@authorized_only
def _performance(self, update: Update, context: CallbackContext) -> None:
"""
@ -615,6 +640,38 @@ class Telegram(RPC):
except RPCException as e:
self._send_msg(str(e))
@authorized_only
def _logs(self, update: Update, context: CallbackContext) -> None:
"""
Handler for /logs
Shows the latest logs
"""
try:
try:
limit = int(context.args[0])
except (TypeError, ValueError, IndexError):
limit = 10
logs = self._rpc_get_logs(limit)['logs']
msgs = ''
msg_template = "*{}* {}: {} \\- `{}`"
for logrec in logs:
msg = msg_template.format(escape_markdown(logrec[0], version=2),
escape_markdown(logrec[2], version=2),
escape_markdown(logrec[3], version=2),
escape_markdown(logrec[4], version=2))
if len(msgs + msg) + 10 >= MAX_TELEGRAM_MESSAGE_LENGTH:
# Send message immediately if it would become too long
self._send_msg(msgs, parse_mode=ParseMode.MARKDOWN_V2)
msgs = msg + '\n'
else:
# Append message to messages to send
msgs += msg + '\n'
if msgs:
self._send_msg(msgs, parse_mode=ParseMode.MARKDOWN_V2)
except RPCException as e:
self._send_msg(str(e))
@authorized_only
def _edge(self, update: Update, context: CallbackContext) -> None:
"""
@ -651,6 +708,7 @@ class Telegram(RPC):
"*/forcesell <trade_id>|all:* `Instantly sells the given trade or all trades, "
"regardless of profit`\n"
f"{forcebuy_text if self._config.get('forcebuy_enable', False) else ''}"
"*/delete <trade_id>:* `Instantly delete the given trade in the database`\n"
"*/performance:* `Show performance of each finished trade grouped by pair`\n"
"*/daily <n>:* `Shows profit or loss per day, over the last n days`\n"
"*/count:* `Show number of trades running compared to allowed number of trades`"
@ -659,6 +717,7 @@ class Telegram(RPC):
"*/stopbuy:* `Stops buying, but handles open trades gracefully` \n"
"*/reload_config:* `Reload configuration file` \n"
"*/show_config:* `Show running configuration` \n"
"*/logs [limit]:* `Show latest logs - defaults to 10` \n"
"*/whitelist:* `Show current whitelist` \n"
"*/blacklist [pair]:* `Show current blacklist, or adds one or more pairs "
"to the blacklist.` \n"

View File

@ -14,8 +14,9 @@ from pandas import DataFrame
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.data.dataprovider import DataProvider
from freqtrade.exceptions import StrategyError, OperationalException
from freqtrade.exceptions import OperationalException, StrategyError
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.exchange.exchange import timeframe_to_next_date
from freqtrade.persistence import Trade
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.wallets import Wallets
@ -44,6 +45,10 @@ class SellType(Enum):
EMERGENCY_SELL = "emergency_sell"
NONE = ""
def __str__(self):
# explicitly convert to String to help with exporting data.
return self.value
class SellCheckTuple(NamedTuple):
"""
@ -293,13 +298,25 @@ class IStrategy(ABC):
if pair in self._pair_locked_until:
del self._pair_locked_until[pair]
def is_pair_locked(self, pair: str) -> bool:
def is_pair_locked(self, pair: str, candle_date: datetime = None) -> bool:
"""
Checks if a pair is currently locked
The 2nd, optional parameter ensures that locks are applied until the new candle arrives,
and not stop at 14:00:00 - while the next candle arrives at 14:00:02 leaving a gap
of 2 seconds for a buy to happen on an old signal.
:param: pair: "Pair to check"
:param candle_date: Date of the last candle. Optional, defaults to current date
:returns: locking state of the pair in question.
"""
if pair not in self._pair_locked_until:
return False
return self._pair_locked_until[pair] >= datetime.now(timezone.utc)
if not candle_date:
return self._pair_locked_until[pair] >= datetime.now(timezone.utc)
else:
# Locking should happen until a new candle arrives
lock_time = timeframe_to_next_date(self.timeframe, candle_date)
# lock_time = candle_date + timedelta(minutes=timeframe_to_minutes(self.timeframe))
return self._pair_locked_until[pair] > lock_time
def analyze_ticker(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
@ -430,7 +447,7 @@ class IStrategy(ABC):
if latest_date < (arrow.utcnow().shift(minutes=-(timeframe_minutes * 2 + offset))):
logger.warning(
'Outdated history for pair %s. Last tick is %s minutes old',
pair, (arrow.utcnow() - latest_date).seconds // 60
pair, int((arrow.utcnow() - latest_date).total_seconds() // 60)
)
return False, False

View File

@ -34,7 +34,7 @@
"# config = Configuration.from_files([\"config.json\"])\n",
"\n",
"# Define some constants\n",
"config[\"ticker_interval\"] = \"5m\"\n",
"config[\"timeframe\"] = \"5m\"\n",
"# Name of the strategy class\n",
"config[\"strategy\"] = \"SampleStrategy\"\n",
"# Location of the data\n",
@ -53,7 +53,7 @@
"from freqtrade.data.history import load_pair_history\n",
"\n",
"candles = load_pair_history(datadir=data_location,\n",
" timeframe=config[\"ticker_interval\"],\n",
" timeframe=config[\"timeframe\"],\n",
" pair=pair)\n",
"\n",
"# Confirm success\n",
@ -136,10 +136,51 @@
"metadata": {},
"outputs": [],
"source": [
"from freqtrade.data.btanalysis import load_backtest_data\n",
"from freqtrade.data.btanalysis import load_backtest_data, load_backtest_stats\n",
"\n",
"# Load backtest results\n",
"trades = load_backtest_data(config[\"user_data_dir\"] / \"backtest_results/backtest-result.json\")\n",
"# if backtest_dir points to a directory, it'll automatically load the last backtest file.\n",
"backtest_dir = config[\"user_data_dir\"] / \"backtest_results\"\n",
"# backtest_dir can also point to a specific file \n",
"# backtest_dir = config[\"user_data_dir\"] / \"backtest_results/backtest-result-2020-07-01_20-04-22.json\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# You can get the full backtest statistics by using the following command.\n",
"# This contains all information used to generate the backtest result.\n",
"stats = load_backtest_stats(backtest_dir)\n",
"\n",
"strategy = 'SampleStrategy'\n",
"# All statistics are available per strategy, so if `--strategy-list` was used during backtest, this will be reflected here as well.\n",
"# Example usages:\n",
"print(stats['strategy'][strategy]['results_per_pair'])\n",
"# Get pairlist used for this backtest\n",
"print(stats['strategy'][strategy]['pairlist'])\n",
"# Get market change (average change of all pairs from start to end of the backtest period)\n",
"print(stats['strategy'][strategy]['market_change'])\n",
"# Maximum drawdown ()\n",
"print(stats['strategy'][strategy]['max_drawdown'])\n",
"# Maximum drawdown start and end\n",
"print(stats['strategy'][strategy]['drawdown_start'])\n",
"print(stats['strategy'][strategy]['drawdown_end'])\n",
"\n",
"\n",
"# Get strategy comparison (only relevant if multiple strategies were compared)\n",
"print(stats['strategy_comparison'])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load backtested trades as dataframe\n",
"trades = load_backtest_data(backtest_dir)\n",
"\n",
"# Show value-counts per pair\n",
"trades.groupby(\"pair\")[\"sell_reason\"].value_counts()"

View File

@ -34,7 +34,7 @@ def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: f
"""
return True
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
def confirm_trade_exit(self, pair: str, trade: 'Trade', order_type: str, amount: float,
rate: float, time_in_force: str, sell_reason: str, **kwargs) -> bool:
"""
Called right before placing a regular sell order.

View File

@ -222,7 +222,7 @@ def crossed(series1, series2, direction=None):
if isinstance(series1, np.ndarray):
series1 = pd.Series(series1)
if isinstance(series2, (float, int, np.ndarray)):
if isinstance(series2, (float, int, np.ndarray, np.integer, np.floating)):
series2 = pd.Series(index=series1.index, data=series2)
if direction is None or direction == "above":

View File

@ -1,9 +1,9 @@
# requirements without requirements installable via conda
# mainly used for Raspberry pi installs
ccxt==1.32.7
SQLAlchemy==1.3.18
ccxt==1.33.52
SQLAlchemy==1.3.19
python-telegram-bot==12.8
arrow==0.15.8
arrow==0.16.0
cachetools==4.1.1
requests==2.24.0
urllib3==1.25.10
@ -32,4 +32,4 @@ flask-cors==3.0.8
colorama==0.4.3
# Building config files interactively
questionary==1.5.2
prompt-toolkit==3.0.5
prompt-toolkit==3.0.6

View File

@ -3,15 +3,15 @@
-r requirements-plot.txt
-r requirements-hyperopt.txt
coveralls==2.1.1
coveralls==2.1.2
flake8==3.8.3
flake8-type-annotations==0.1.0
flake8-tidy-imports==4.1.0
mypy==0.782
pytest==5.4.3
pytest==6.0.1
pytest-asyncio==0.14.0
pytest-cov==2.10.0
pytest-mock==3.2.0
pytest-cov==2.10.1
pytest-mock==3.3.0
pytest-random-order==1.0.4
# Convert jupyter notebooks to markdown documents

View File

@ -2,4 +2,4 @@
-r requirements-common.txt
numpy==1.19.1
pandas==1.0.5
pandas==1.1.1

View File

@ -62,6 +62,9 @@ class FtRestClient():
def _get(self, apipath, params: dict = None):
return self._call("GET", apipath, params=params)
def _delete(self, apipath, params: dict = None):
return self._call("DELETE", apipath, params=params)
def _post(self, apipath, params: dict = None, data: dict = None):
return self._call("POST", apipath, params=params, data=data)
@ -156,6 +159,14 @@ class FtRestClient():
"""
return self._get("show_config")
def logs(self, limit=None):
"""Show latest logs.
:param limit: Limits log messages to the last <limit> logs. No limit to get all the trades.
:return: json object
"""
return self._get("logs", params={"limit": limit} if limit else 0)
def trades(self, limit=None):
"""Return trades history.
@ -164,6 +175,15 @@ class FtRestClient():
"""
return self._get("trades", params={"limit": limit} if limit else 0)
def delete_trade(self, trade_id):
"""Delete trade from the database.
Tries to close open orders. Requires manual handling of this asset on the exchange.
:param trade_id: Deletes the trade with this ID from the database.
:return: json object
"""
return self._delete("trades/{}".format(trade_id))
def whitelist(self):
"""Show the current whitelist.
@ -264,11 +284,11 @@ def main(args):
print_commands()
sys.exit()
config = load_config(args["config"])
url = config.get("api_server", {}).get("server_url", "127.0.0.1")
port = config.get("api_server", {}).get("listen_port", "8080")
username = config.get("api_server", {}).get("username")
password = config.get("api_server", {}).get("password")
config = load_config(args['config'])
url = config.get('api_server', {}).get('server_url', '127.0.0.1')
port = config.get('api_server', {}).get('listen_port', '8080')
username = config.get('api_server', {}).get('username')
password = config.get('api_server', {}).get('password')
server_url = f"http://{url}:{port}"
client = FtRestClient(server_url, username, password)

View File

@ -667,7 +667,7 @@ def test_start_list_hyperopts(mocker, caplog, capsys):
args = [
"list-hyperopts",
"--hyperopt-path",
str(Path(__file__).parent.parent / "optimize"),
str(Path(__file__).parent.parent / "optimize" / "hyperopts"),
"-1"
]
pargs = get_args(args)
@ -683,7 +683,7 @@ def test_start_list_hyperopts(mocker, caplog, capsys):
args = [
"list-hyperopts",
"--hyperopt-path",
str(Path(__file__).parent.parent / "optimize"),
str(Path(__file__).parent.parent / "optimize" / "hyperopts"),
]
pargs = get_args(args)
# pargs['config'] = None
@ -692,7 +692,6 @@ def test_start_list_hyperopts(mocker, caplog, capsys):
assert "TestHyperoptLegacy" not in captured.out
assert "legacy_hyperopt.py" not in captured.out
assert "DefaultHyperOpt" in captured.out
assert "test_hyperopt.py" in captured.out
def test_start_test_pairlist(mocker, caplog, tickers, default_conf, capsys):
@ -736,7 +735,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
args = [
"hyperopt-list",
"--no-details"
"--no-details",
]
pargs = get_args(args)
pargs['config'] = None
@ -749,7 +748,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
args = [
"hyperopt-list",
"--best",
"--no-details"
"--no-details",
]
pargs = get_args(args)
pargs['config'] = None
@ -763,7 +762,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
args = [
"hyperopt-list",
"--profitable",
"--no-details"
"--no-details",
]
pargs = get_args(args)
pargs['config'] = None
@ -776,7 +775,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
" 11/12", " 12/12"])
args = [
"hyperopt-list",
"--profitable"
"--profitable",
]
pargs = get_args(args)
pargs['config'] = None
@ -792,7 +791,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
"hyperopt-list",
"--no-details",
"--no-color",
"--min-trades", "20"
"--min-trades", "20",
]
pargs = get_args(args)
pargs['config'] = None
@ -806,7 +805,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
"hyperopt-list",
"--profitable",
"--no-details",
"--max-trades", "20"
"--max-trades", "20",
]
pargs = get_args(args)
pargs['config'] = None
@ -821,7 +820,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
"hyperopt-list",
"--profitable",
"--no-details",
"--min-avg-profit", "0.11"
"--min-avg-profit", "0.11",
]
pargs = get_args(args)
pargs['config'] = None
@ -835,7 +834,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
args = [
"hyperopt-list",
"--no-details",
"--max-avg-profit", "0.10"
"--max-avg-profit", "0.10",
]
pargs = get_args(args)
pargs['config'] = None
@ -849,7 +848,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
args = [
"hyperopt-list",
"--no-details",
"--min-total-profit", "0.4"
"--min-total-profit", "0.4",
]
pargs = get_args(args)
pargs['config'] = None
@ -863,7 +862,35 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
args = [
"hyperopt-list",
"--no-details",
"--max-total-profit", "0.4"
"--max-total-profit", "0.4",
]
pargs = get_args(args)
pargs['config'] = None
start_hyperopt_list(pargs)
captured = capsys.readouterr()
assert all(x in captured.out
for x in [" 1/12", " 2/12", " 3/12", " 5/12", " 6/12", " 7/12", " 8/12",
" 9/12", " 11/12"])
assert all(x not in captured.out
for x in [" 4/12", " 10/12", " 12/12"])
args = [
"hyperopt-list",
"--no-details",
"--min-objective", "0.1",
]
pargs = get_args(args)
pargs['config'] = None
start_hyperopt_list(pargs)
captured = capsys.readouterr()
assert all(x in captured.out
for x in [" 10/12"])
assert all(x not in captured.out
for x in [" 1/12", " 2/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12",
" 9/12", " 11/12", " 12/12"])
args = [
"hyperopt-list",
"--no-details",
"--max-objective", "0.1",
]
pargs = get_args(args)
pargs['config'] = None
@ -878,7 +905,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
"hyperopt-list",
"--profitable",
"--no-details",
"--min-avg-time", "2000"
"--min-avg-time", "2000",
]
pargs = get_args(args)
pargs['config'] = None
@ -892,7 +919,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
args = [
"hyperopt-list",
"--no-details",
"--max-avg-time", "1500"
"--max-avg-time", "1500",
]
pargs = get_args(args)
pargs['config'] = None
@ -906,7 +933,7 @@ def test_hyperopt_list(mocker, capsys, caplog, hyperopt_results):
args = [
"hyperopt-list",
"--no-details",
"--export-csv", "test_file.csv"
"--export-csv", "test_file.csv",
]
pargs = get_args(args)
pargs['config'] = None

View File

@ -78,7 +78,7 @@ def patch_exchange(mocker, api_mock=None, id='bittrex', mock_markets=True) -> No
def get_patched_exchange(mocker, config, api_mock=None, id='bittrex',
mock_markets=True) -> Exchange:
patch_exchange(mocker, api_mock, id, mock_markets)
config["exchange"]["name"] = id
config['exchange']['name'] = id
try:
exchange = ExchangeResolver.load_exchange(id, config)
except ImportError:
@ -176,11 +176,13 @@ def create_mock_trades(fee):
pair='ETH/BTC',
stake_amount=0.001,
amount=123.0,
amount_requested=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
open_order_id='dry_run_buy_12345'
open_order_id='dry_run_buy_12345',
strategy='DefaultStrategy',
)
Trade.session.add(trade)
@ -188,6 +190,7 @@ def create_mock_trades(fee):
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
amount_requested=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
@ -195,7 +198,8 @@ def create_mock_trades(fee):
close_profit=0.005,
exchange='bittrex',
is_open=False,
open_order_id='dry_run_sell_12345'
open_order_id='dry_run_sell_12345',
strategy='DefaultStrategy',
)
Trade.session.add(trade)
@ -218,11 +222,13 @@ def create_mock_trades(fee):
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
amount_requested=124.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
open_order_id='prod_buy_12345'
open_order_id='prod_buy_12345',
strategy='DefaultStrategy',
)
Trade.session.add(trade)

View File

@ -6,24 +6,48 @@ from arrow import Arrow
from pandas import DataFrame, DateOffset, Timestamp, to_datetime
from freqtrade.configuration import TimeRange
from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS,
analyze_trade_parallelism,
calculate_market_change,
calculate_max_drawdown,
combine_dataframes_with_mean,
create_cum_profit,
extract_trades_of_period,
get_latest_backtest_filename,
load_backtest_data, load_trades,
load_trades_from_db)
from freqtrade.data.history import load_data, load_pair_history
from freqtrade.optimize.backtesting import BacktestResult
from tests.conftest import create_mock_trades
def test_load_backtest_data(testdatadir):
def test_get_latest_backtest_filename(testdatadir, mocker):
with pytest.raises(ValueError, match=r"Directory .* does not exist\."):
get_latest_backtest_filename(testdatadir / 'does_not_exist')
with pytest.raises(ValueError,
match=r"Directory .* does not seem to contain .*"):
get_latest_backtest_filename(testdatadir.parent)
res = get_latest_backtest_filename(testdatadir)
assert res == 'backtest-result_new.json'
res = get_latest_backtest_filename(str(testdatadir))
assert res == 'backtest-result_new.json'
mocker.patch("freqtrade.data.btanalysis.json_load", return_value={})
with pytest.raises(ValueError, match=r"Invalid '.last_result.json' format."):
get_latest_backtest_filename(testdatadir)
def test_load_backtest_data_old_format(testdatadir):
filename = testdatadir / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
assert isinstance(bt_data, DataFrame)
assert list(bt_data.columns) == BT_DATA_COLUMNS + ["profit"]
assert list(bt_data.columns) == BT_DATA_COLUMNS + ["profit_abs"]
assert len(bt_data) == 179
# Test loading from string (must yield same result)
@ -34,6 +58,49 @@ def test_load_backtest_data(testdatadir):
load_backtest_data(str("filename") + "nofile")
def test_load_backtest_data_new_format(testdatadir):
filename = testdatadir / "backtest-result_new.json"
bt_data = load_backtest_data(filename)
assert isinstance(bt_data, DataFrame)
assert set(bt_data.columns) == set(list(BacktestResult._fields) + ["profit_abs"])
assert len(bt_data) == 179
# Test loading from string (must yield same result)
bt_data2 = load_backtest_data(str(filename))
assert bt_data.equals(bt_data2)
# Test loading from folder (must yield same result)
bt_data3 = load_backtest_data(testdatadir)
assert bt_data.equals(bt_data3)
with pytest.raises(ValueError, match=r"File .* does not exist\."):
load_backtest_data(str("filename") + "nofile")
with pytest.raises(ValueError, match=r"Unknown dataformat."):
load_backtest_data(testdatadir / LAST_BT_RESULT_FN)
def test_load_backtest_data_multi(testdatadir):
filename = testdatadir / "backtest-result_multistrat.json"
for strategy in ('DefaultStrategy', 'TestStrategy'):
bt_data = load_backtest_data(filename, strategy=strategy)
assert isinstance(bt_data, DataFrame)
assert set(bt_data.columns) == set(list(BacktestResult._fields) + ["profit_abs"])
assert len(bt_data) == 179
# Test loading from string (must yield same result)
bt_data2 = load_backtest_data(str(filename), strategy=strategy)
assert bt_data.equals(bt_data2)
with pytest.raises(ValueError, match=r"Strategy XYZ not available in the backtest result\."):
load_backtest_data(filename, strategy='XYZ')
with pytest.raises(ValueError, match=r"Detected backtest result with more than one strategy.*"):
load_backtest_data(filename)
@pytest.mark.usefixtures("init_persistence")
def test_load_trades_from_db(default_conf, fee, mocker):
@ -46,12 +113,16 @@ def test_load_trades_from_db(default_conf, fee, mocker):
assert len(trades) == 4
assert isinstance(trades, DataFrame)
assert "pair" in trades.columns
assert "open_time" in trades.columns
assert "open_date" in trades.columns
assert "profit_percent" in trades.columns
for col in BT_DATA_COLUMNS:
if col not in ['index', 'open_at_end']:
assert col in trades.columns
trades = load_trades_from_db(db_url=default_conf['db_url'], strategy='DefaultStrategy')
assert len(trades) == 3
trades = load_trades_from_db(db_url=default_conf['db_url'], strategy='NoneStrategy')
assert len(trades) == 0
def test_extract_trades_of_period(testdatadir):
@ -66,13 +137,13 @@ def test_extract_trades_of_period(testdatadir):
{'pair': [pair, pair, pair, pair],
'profit_percent': [0.0, 0.1, -0.2, -0.5],
'profit_abs': [0.0, 1, -2, -5],
'open_time': to_datetime([Arrow(2017, 11, 13, 15, 40, 0).datetime,
'open_date': to_datetime([Arrow(2017, 11, 13, 15, 40, 0).datetime,
Arrow(2017, 11, 14, 9, 41, 0).datetime,
Arrow(2017, 11, 14, 14, 20, 0).datetime,
Arrow(2017, 11, 15, 3, 40, 0).datetime,
], utc=True
),
'close_time': to_datetime([Arrow(2017, 11, 13, 16, 40, 0).datetime,
'close_date': to_datetime([Arrow(2017, 11, 13, 16, 40, 0).datetime,
Arrow(2017, 11, 14, 10, 41, 0).datetime,
Arrow(2017, 11, 14, 15, 25, 0).datetime,
Arrow(2017, 11, 15, 3, 55, 0).datetime,
@ -81,10 +152,10 @@ def test_extract_trades_of_period(testdatadir):
trades1 = extract_trades_of_period(data, trades)
# First and last trade are dropped as they are out of range
assert len(trades1) == 2
assert trades1.iloc[0].open_time == Arrow(2017, 11, 14, 9, 41, 0).datetime
assert trades1.iloc[0].close_time == Arrow(2017, 11, 14, 10, 41, 0).datetime
assert trades1.iloc[-1].open_time == Arrow(2017, 11, 14, 14, 20, 0).datetime
assert trades1.iloc[-1].close_time == Arrow(2017, 11, 14, 15, 25, 0).datetime
assert trades1.iloc[0].open_date == Arrow(2017, 11, 14, 9, 41, 0).datetime
assert trades1.iloc[0].close_date == Arrow(2017, 11, 14, 10, 41, 0).datetime
assert trades1.iloc[-1].open_date == Arrow(2017, 11, 14, 14, 20, 0).datetime
assert trades1.iloc[-1].close_date == Arrow(2017, 11, 14, 15, 25, 0).datetime
def test_analyze_trade_parallelism(default_conf, mocker, testdatadir):
@ -105,7 +176,8 @@ def test_load_trades(default_conf, mocker):
load_trades("DB",
db_url=default_conf.get('db_url'),
exportfilename=default_conf.get('exportfilename'),
no_trades=False
no_trades=False,
strategy="DefaultStrategy",
)
assert db_mock.call_count == 1
@ -135,6 +207,14 @@ def test_load_trades(default_conf, mocker):
assert bt_mock.call_count == 0
def test_calculate_market_change(testdatadir):
pairs = ["ETH/BTC", "ADA/BTC"]
data = load_data(datadir=testdatadir, pairs=pairs, timeframe='5m')
result = calculate_market_change(data)
assert isinstance(result, float)
assert pytest.approx(result) == 0.00955514
def test_combine_dataframes_with_mean(testdatadir):
pairs = ["ETH/BTC", "ADA/BTC"]
data = load_data(datadir=testdatadir, pairs=pairs, timeframe='5m')
@ -165,7 +245,7 @@ def test_create_cum_profit1(testdatadir):
filename = testdatadir / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
# Move close-time to "off" the candle, to make sure the logic still works
bt_data.loc[:, 'close_time'] = bt_data.loc[:, 'close_time'] + DateOffset(seconds=20)
bt_data.loc[:, 'close_date'] = bt_data.loc[:, 'close_date'] + DateOffset(seconds=20)
timerange = TimeRange.parse_timerange("20180110-20180112")
df = load_pair_history(pair="TRX/BTC", timeframe='5m',
@ -204,11 +284,11 @@ def test_calculate_max_drawdown2():
-0.033961, 0.010680, 0.010886, -0.029274, 0.011178, 0.010693, 0.010711]
dates = [Arrow(2020, 1, 1).shift(days=i) for i in range(len(values))]
df = DataFrame(zip(values, dates), columns=['profit', 'open_time'])
df = DataFrame(zip(values, dates), columns=['profit', 'open_date'])
# sort by profit and reset index
df = df.sort_values('profit').reset_index(drop=True)
df1 = df.copy()
drawdown, h, low = calculate_max_drawdown(df, date_col='open_time', value_col='profit')
drawdown, h, low = calculate_max_drawdown(df, date_col='open_date', value_col='profit')
# Ensure df has not been altered.
assert df.equals(df1)
@ -217,6 +297,6 @@ def test_calculate_max_drawdown2():
assert h < low
assert drawdown == 0.091755
df = DataFrame(zip(values[:5], dates[:5]), columns=['profit', 'open_time'])
df = DataFrame(zip(values[:5], dates[:5]), columns=['profit', 'open_date'])
with pytest.raises(ValueError, match='No losing trade, therefore no drawdown.'):
calculate_max_drawdown(df, date_col='open_time', value_col='profit')
calculate_max_drawdown(df, date_col='open_date', value_col='profit')

View File

@ -36,7 +36,7 @@ def _backup_file(file: Path, copy_file: bool = False) -> None:
"""
Backup existing file to avoid deleting the user file
:param file: complete path to the file
:param touch_file: create an empty file in replacement
:param copy_file: keep file in place too.
:return: None
"""
file_swp = str(file) + '.swp'

View File

@ -163,8 +163,8 @@ def test_edge_results(edge_conf, mocker, caplog, data) -> None:
for c, trade in enumerate(data.trades):
res = results.iloc[c]
assert res.exit_type == trade.sell_reason
assert res.open_time == _get_frame_time_from_offset(trade.open_tick).replace(tzinfo=None)
assert res.close_time == _get_frame_time_from_offset(trade.close_tick).replace(tzinfo=None)
assert res.open_date == _get_frame_time_from_offset(trade.open_tick).replace(tzinfo=None)
assert res.close_date == _get_frame_time_from_offset(trade.close_tick).replace(tzinfo=None)
def test_adjust(mocker, edge_conf):
@ -354,10 +354,8 @@ def test_process_expectancy(mocker, edge_conf, fee, risk_reward_ratio, expectanc
'stoploss': -0.9,
'profit_percent': '',
'profit_abs': '',
'open_time': np.datetime64('2018-10-03T00:05:00.000000000'),
'close_time': np.datetime64('2018-10-03T00:10:00.000000000'),
'open_index': 1,
'close_index': 1,
'open_date': np.datetime64('2018-10-03T00:05:00.000000000'),
'close_date': np.datetime64('2018-10-03T00:10:00.000000000'),
'trade_duration': '',
'open_rate': 17,
'close_rate': 17,
@ -367,10 +365,8 @@ def test_process_expectancy(mocker, edge_conf, fee, risk_reward_ratio, expectanc
'stoploss': -0.9,
'profit_percent': '',
'profit_abs': '',
'open_time': np.datetime64('2018-10-03T00:20:00.000000000'),
'close_time': np.datetime64('2018-10-03T00:25:00.000000000'),
'open_index': 4,
'close_index': 4,
'open_date': np.datetime64('2018-10-03T00:20:00.000000000'),
'close_date': np.datetime64('2018-10-03T00:25:00.000000000'),
'trade_duration': '',
'open_rate': 20,
'close_rate': 20,
@ -380,10 +376,8 @@ def test_process_expectancy(mocker, edge_conf, fee, risk_reward_ratio, expectanc
'stoploss': -0.9,
'profit_percent': '',
'profit_abs': '',
'open_time': np.datetime64('2018-10-03T00:30:00.000000000'),
'close_time': np.datetime64('2018-10-03T00:40:00.000000000'),
'open_index': 6,
'close_index': 7,
'open_date': np.datetime64('2018-10-03T00:30:00.000000000'),
'close_date': np.datetime64('2018-10-03T00:40:00.000000000'),
'trade_duration': '',
'open_rate': 26,
'close_rate': 34,
@ -409,3 +403,98 @@ def test_process_expectancy(mocker, edge_conf, fee, risk_reward_ratio, expectanc
final = edge._process_expectancy(trades_df)
assert len(final) == 0
assert isinstance(final, dict)
def test_process_expectancy_remove_pumps(mocker, edge_conf, fee,):
edge_conf['edge']['min_trade_number'] = 2
edge_conf['edge']['remove_pumps'] = True
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
freqtrade.exchange.get_fee = fee
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
trades = [
{'pair': 'TEST/BTC',
'stoploss': -0.9,
'profit_percent': '',
'profit_abs': '',
'open_date': np.datetime64('2018-10-03T00:05:00.000000000'),
'close_date': np.datetime64('2018-10-03T00:10:00.000000000'),
'open_index': 1,
'close_index': 1,
'trade_duration': '',
'open_rate': 17,
'close_rate': 15,
'exit_type': 'sell_signal'},
{'pair': 'TEST/BTC',
'stoploss': -0.9,
'profit_percent': '',
'profit_abs': '',
'open_date': np.datetime64('2018-10-03T00:20:00.000000000'),
'close_date': np.datetime64('2018-10-03T00:25:00.000000000'),
'open_index': 4,
'close_index': 4,
'trade_duration': '',
'open_rate': 20,
'close_rate': 10,
'exit_type': 'sell_signal'},
{'pair': 'TEST/BTC',
'stoploss': -0.9,
'profit_percent': '',
'profit_abs': '',
'open_date': np.datetime64('2018-10-03T00:20:00.000000000'),
'close_date': np.datetime64('2018-10-03T00:25:00.000000000'),
'open_index': 4,
'close_index': 4,
'trade_duration': '',
'open_rate': 20,
'close_rate': 10,
'exit_type': 'sell_signal'},
{'pair': 'TEST/BTC',
'stoploss': -0.9,
'profit_percent': '',
'profit_abs': '',
'open_date': np.datetime64('2018-10-03T00:20:00.000000000'),
'close_date': np.datetime64('2018-10-03T00:25:00.000000000'),
'open_index': 4,
'close_index': 4,
'trade_duration': '',
'open_rate': 20,
'close_rate': 10,
'exit_type': 'sell_signal'},
{'pair': 'TEST/BTC',
'stoploss': -0.9,
'profit_percent': '',
'profit_abs': '',
'open_date': np.datetime64('2018-10-03T00:20:00.000000000'),
'close_date': np.datetime64('2018-10-03T00:25:00.000000000'),
'open_index': 4,
'close_index': 4,
'trade_duration': '',
'open_rate': 20,
'close_rate': 10,
'exit_type': 'sell_signal'},
{'pair': 'TEST/BTC',
'stoploss': -0.9,
'profit_percent': '',
'profit_abs': '',
'open_date': np.datetime64('2018-10-03T00:30:00.000000000'),
'close_date': np.datetime64('2018-10-03T00:40:00.000000000'),
'open_index': 6,
'close_index': 7,
'trade_duration': '',
'open_rate': 26,
'close_rate': 134,
'exit_type': 'sell_signal'}
]
trades_df = DataFrame(trades)
trades_df = edge._fill_calculable_fields(trades_df)
final = edge._process_expectancy(trades_df)
assert 'TEST/BTC' in final
assert final['TEST/BTC'].stoploss == -0.9
assert final['TEST/BTC'].nb_trades == len(trades_df) - 1
assert round(final['TEST/BTC'].winrate, 10) == 0.0

View File

@ -11,11 +11,12 @@ import ccxt
import pytest
from pandas import DataFrame
from freqtrade.exceptions import (DependencyException, InvalidOrderException, DDosProtection,
OperationalException, TemporaryError)
from freqtrade.exceptions import (DDosProtection, DependencyException,
InvalidOrderException, OperationalException,
TemporaryError)
from freqtrade.exchange import Binance, Exchange, Kraken
from freqtrade.exchange.common import API_RETRY_COUNT, calculate_backoff
from freqtrade.exchange.exchange import (market_is_active, symbol_is_pair,
from freqtrade.exchange.exchange import (market_is_active,
timeframe_to_minutes,
timeframe_to_msecs,
timeframe_to_next_date,
@ -1818,7 +1819,7 @@ def test_cancel_order_with_result_error(default_conf, mocker, exchange_name, cap
res = exchange.cancel_order_with_result('1234', 'ETH/BTC', 1541)
assert isinstance(res, dict)
assert log_has("Could not cancel order 1234.", caplog)
assert log_has("Could not cancel order 1234 for ETH/BTC.", caplog)
assert log_has("Could not fetch cancelled order 1234.", caplog)
assert res['amount'] == 1541
@ -1896,10 +1897,10 @@ def test_fetch_order(default_conf, mocker, exchange_name):
assert tm.call_args_list[1][0][0] == 2
assert tm.call_args_list[2][0][0] == 5
assert tm.call_args_list[3][0][0] == 10
assert api_mock.fetch_order.call_count == API_RETRY_COUNT + 1
assert api_mock.fetch_order.call_count == 6
ccxt_exceptionhandlers(mocker, default_conf, api_mock, exchange_name,
'fetch_order', 'fetch_order',
'fetch_order', 'fetch_order', retries=6,
order_id='_', pair='TKN/BTC')
@ -1932,6 +1933,7 @@ def test_fetch_stoploss_order(default_conf, mocker, exchange_name):
ccxt_exceptionhandlers(mocker, default_conf, api_mock, exchange_name,
'fetch_stoploss_order', 'fetch_order',
retries=6,
order_id='_', pair='TKN/BTC')
@ -2217,25 +2219,42 @@ def test_timeframe_to_next_date():
assert timeframe_to_next_date("5m") > date
@pytest.mark.parametrize("market_symbol,base_currency,quote_currency,expected_result", [
("BTC/USDT", None, None, True),
("USDT/BTC", None, None, True),
("BTCUSDT", None, None, False),
("BTC/USDT", None, "USDT", True),
("USDT/BTC", None, "USDT", False),
("BTCUSDT", None, "USDT", False),
("BTC/USDT", "BTC", None, True),
("USDT/BTC", "BTC", None, False),
("BTCUSDT", "BTC", None, False),
("BTC/USDT", "BTC", "USDT", True),
("BTC/USDT", "USDT", "BTC", False),
("BTC/USDT", "BTC", "USD", False),
("BTCUSDT", "BTC", "USDT", False),
("BTC/", None, None, False),
("/USDT", None, None, False),
@pytest.mark.parametrize("market_symbol,base,quote,exchange,add_dict,expected_result", [
("BTC/USDT", 'BTC', 'USDT', "binance", {}, True),
("USDT/BTC", 'USDT', 'BTC', "binance", {}, True),
("USDT/BTC", 'BTC', 'USDT', "binance", {}, False), # Reversed currencies
("BTCUSDT", 'BTC', 'USDT', "binance", {}, False), # No seperating /
("BTCUSDT", None, "USDT", "binance", {}, False), #
("USDT/BTC", "BTC", None, "binance", {}, False),
("BTCUSDT", "BTC", None, "binance", {}, False),
("BTC/USDT", "BTC", "USDT", "binance", {}, True),
("BTC/USDT", "USDT", "BTC", "binance", {}, False), # reversed currencies
("BTC/USDT", "BTC", "USD", "binance", {}, False), # Wrong quote currency
("BTC/", "BTC", 'UNK', "binance", {}, False),
("/USDT", 'UNK', 'USDT', "binance", {}, False),
("BTC/EUR", 'BTC', 'EUR', "kraken", {"darkpool": False}, True),
("EUR/BTC", 'EUR', 'BTC', "kraken", {"darkpool": False}, True),
("EUR/BTC", 'BTC', 'EUR', "kraken", {"darkpool": False}, False), # Reversed currencies
("BTC/EUR", 'BTC', 'USD', "kraken", {"darkpool": False}, False), # wrong quote currency
("BTC/EUR", 'BTC', 'EUR', "kraken", {"darkpool": True}, False), # no darkpools
("BTC/EUR.d", 'BTC', 'EUR', "kraken", {"darkpool": True}, False), # no darkpools
("BTC/USD", 'BTC', 'USD', "ftx", {'spot': True}, True),
("USD/BTC", 'USD', 'BTC', "ftx", {'spot': True}, True),
("BTC/USD", 'BTC', 'USDT', "ftx", {'spot': True}, False), # Wrong quote currency
("BTC/USD", 'USD', 'BTC', "ftx", {'spot': True}, False), # Reversed currencies
("BTC/USD", 'BTC', 'USD', "ftx", {'spot': False}, False), # Can only trade spot markets
("BTC-PERP", 'BTC', 'USD', "ftx", {'spot': False}, False), # Can only trade spot markets
])
def test_symbol_is_pair(market_symbol, base_currency, quote_currency, expected_result) -> None:
assert symbol_is_pair(market_symbol, base_currency, quote_currency) == expected_result
def test_market_is_tradable(mocker, default_conf, market_symbol, base,
quote, add_dict, exchange, expected_result) -> None:
ex = get_patched_exchange(mocker, default_conf, id=exchange)
market = {
'symbol': market_symbol,
'base': base,
'quote': quote,
**(add_dict),
}
assert ex.market_is_tradable(market) == expected_result
@pytest.mark.parametrize("market,expected_result", [
@ -2315,6 +2334,18 @@ def test_calculate_fee_rate(mocker, default_conf, order, expected) -> None:
(3, 3, 1),
(0, 1, 2),
(1, 1, 1),
(0, 4, 17),
(1, 4, 10),
(2, 4, 5),
(3, 4, 2),
(4, 4, 1),
(0, 5, 26),
(1, 5, 17),
(2, 5, 10),
(3, 5, 5),
(4, 5, 2),
(5, 5, 1),
])
def test_calculate_backoff(retrycount, max_retries, expected):
assert calculate_backoff(retrycount, max_retries) == expected

View File

@ -154,4 +154,5 @@ def test_fetch_stoploss_order(default_conf, mocker):
ccxt_exceptionhandlers(mocker, default_conf, api_mock, 'ftx',
'fetch_stoploss_order', 'fetch_orders',
retries=6,
order_id='_', pair='TKN/BTC')

View File

@ -395,5 +395,5 @@ def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
for c, trade in enumerate(data.trades):
res = results.iloc[c]
assert res.sell_reason == trade.sell_reason
assert res.open_time == _get_frame_time_from_offset(trade.open_tick)
assert res.close_time == _get_frame_time_from_offset(trade.close_tick)
assert res.open_date == _get_frame_time_from_offset(trade.open_tick)
assert res.close_date == _get_frame_time_from_offset(trade.close_tick)

View File

@ -354,8 +354,8 @@ def test_backtesting_start(default_conf, mocker, testdatadir, caplog) -> None:
exists = [
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:59:00+00:00 (0 days)..'
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:59:00 (0 days)..'
]
for line in exists:
assert log_has(line, caplog)
@ -464,28 +464,29 @@ def test_backtest(default_conf, fee, mocker, testdatadir) -> None:
{'pair': [pair, pair],
'profit_percent': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'open_time': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True
),
'close_time': pd.to_datetime([Arrow(2018, 1, 29, 22, 35, 0).datetime,
'open_rate': [0.104445, 0.10302485],
'open_fee': [0.0025, 0.0025],
'close_date': pd.to_datetime([Arrow(2018, 1, 29, 22, 35, 0).datetime,
Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True),
'open_index': [78, 184],
'close_index': [125, 192],
'close_rate': [0.104969, 0.103541],
'close_fee': [0.0025, 0.0025],
'amount': [0.00957442, 0.0097064],
'trade_duration': [235, 40],
'open_at_end': [False, False],
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.104969, 0.103541],
'sell_reason': [SellType.ROI, SellType.ROI]
})
pd.testing.assert_frame_equal(results, expected)
data_pair = processed[pair]
for _, t in results.iterrows():
ln = data_pair.loc[data_pair["date"] == t["open_time"]]
ln = data_pair.loc[data_pair["date"] == t["open_date"]]
# Check open trade rate alignes to open rate
assert ln is not None
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
# check close trade rate alignes to close rate or is between high and low
ln = data_pair.loc[data_pair["date"] == t["close_time"]]
ln = data_pair.loc[data_pair["date"] == t["close_date"]]
assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or
round(ln.iloc[0]["low"], 6) < round(
t["close_rate"], 6) < round(ln.iloc[0]["high"], 6))
@ -677,10 +678,10 @@ def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir):
f'Using data directory: {testdatadir} ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Loading data from 2017-11-14T20:57:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Parameter --enable-position-stacking detected ...'
]
@ -707,6 +708,7 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
generate_pair_metrics=MagicMock(),
generate_sell_reason_stats=sell_reason_mock,
generate_strategy_metrics=strat_summary,
generate_daily_stats=MagicMock(),
)
patched_configuration_load_config_file(mocker, default_conf)
@ -740,10 +742,10 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
f'Using data directory: {testdatadir} ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Loading data from 2017-11-14T20:57:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategyLegacy',
@ -761,13 +763,11 @@ def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdat
pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC'],
'profit_percent': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'open_time': pd.to_datetime(['2018-01-29 18:40:00',
'open_date': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00', ], utc=True
),
'close_time': pd.to_datetime(['2018-01-29 20:45:00',
'close_date': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00', ], utc=True),
'open_index': [78, 184],
'close_index': [125, 192],
'trade_duration': [235, 40],
'open_at_end': [False, False],
'open_rate': [0.104445, 0.10302485],
@ -777,15 +777,13 @@ def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdat
pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC', 'ETH/BTC'],
'profit_percent': [0.03, 0.01, 0.1],
'profit_abs': [0.01, 0.02, 0.2],
'open_time': pd.to_datetime(['2018-01-29 18:40:00',
'open_date': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00',
'2018-01-30 05:30:00'], utc=True
),
'close_time': pd.to_datetime(['2018-01-29 20:45:00',
'close_date': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00',
'2018-01-30 08:30:00'], utc=True),
'open_index': [78, 184, 185],
'close_index': [125, 224, 205],
'trade_duration': [47, 40, 20],
'open_at_end': [False, False, False],
'open_rate': [0.104445, 0.10302485, 0.122541],
@ -823,10 +821,10 @@ def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdat
f'Using data directory: {testdatadir} ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Loading data from 2017-11-14T20:57:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategyLegacy',

View File

@ -105,3 +105,17 @@ def test_edge_init_fee(mocker, edge_conf) -> None:
edge_cli = EdgeCli(edge_conf)
assert edge_cli.edge.fee == 0.1234
assert fee_mock.call_count == 0
def test_edge_start(mocker, edge_conf) -> None:
mock_calculate = mocker.patch('freqtrade.edge.edge_positioning.Edge.calculate',
return_value=True)
table_mock = mocker.patch('freqtrade.optimize.edge_cli.generate_edge_table')
patch_exchange(mocker)
edge_conf['stake_amount'] = 20
edge_cli = EdgeCli(edge_conf)
edge_cli.start()
assert mock_calculate.call_count == 1
assert table_mock.call_count == 1

View File

@ -3,6 +3,7 @@ import locale
import logging
from datetime import datetime
from pathlib import Path
from copy import deepcopy
from typing import Dict, List
from unittest.mock import MagicMock, PropertyMock
@ -16,7 +17,6 @@ from freqtrade.commands.optimize_commands import (setup_optimize_configuration,
start_hyperopt)
from freqtrade.data.history import load_data
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.optimize.default_hyperopt import DefaultHyperOpt
from freqtrade.optimize.default_hyperopt_loss import DefaultHyperOptLoss
from freqtrade.optimize.hyperopt import Hyperopt
from freqtrade.resolvers.hyperopt_resolver import (HyperOptLossResolver,
@ -26,15 +26,28 @@ from freqtrade.strategy.interface import SellType
from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
patched_configuration_load_config_file)
from .hyperopts.default_hyperopt import DefaultHyperOpt
@pytest.fixture(scope='function')
def hyperopt(default_conf, mocker):
default_conf.update({
'spaces': ['default'],
'hyperopt': 'DefaultHyperOpt',
})
def hyperopt_conf(default_conf):
hyperconf = deepcopy(default_conf)
hyperconf.update({
'hyperopt': 'DefaultHyperOpt',
'hyperopt_path': str(Path(__file__).parent / 'hyperopts'),
'epochs': 1,
'timerange': None,
'spaces': ['default'],
'hyperopt_jobs': 1,
})
return hyperconf
@pytest.fixture(scope='function')
def hyperopt(hyperopt_conf, mocker):
patch_exchange(mocker)
return Hyperopt(default_conf)
return Hyperopt(hyperopt_conf)
@pytest.fixture(scope='function')
@ -46,7 +59,7 @@ def hyperopt_results():
'profit_abs': [-0.2, 0.4, 0.6],
'trade_duration': [10, 30, 10],
'sell_reason': [SellType.STOP_LOSS, SellType.ROI, SellType.ROI],
'close_time':
'close_date':
[
datetime(2019, 1, 1, 9, 26, 3, 478039),
datetime(2019, 2, 1, 9, 26, 3, 478039),
@ -160,7 +173,7 @@ def test_setup_hyperopt_configuration_with_arguments(mocker, default_conf, caplo
assert log_has('Parameter --print-all detected ...', caplog)
def test_setup_hyperopt_configuration_unlimited_stake_amount(mocker, default_conf, caplog) -> None:
def test_setup_hyperopt_configuration_unlimited_stake_amount(mocker, default_conf) -> None:
default_conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
patched_configuration_load_config_file(mocker, default_conf)
@ -201,7 +214,7 @@ def test_hyperoptresolver(mocker, default_conf, caplog) -> None:
assert hasattr(x, "timeframe")
def test_hyperoptresolver_wrongname(mocker, default_conf, caplog) -> None:
def test_hyperoptresolver_wrongname(default_conf) -> None:
default_conf.update({'hyperopt': "NonExistingHyperoptClass"})
with pytest.raises(OperationalException, match=r'Impossible to load Hyperopt.*'):
@ -216,7 +229,7 @@ def test_hyperoptresolver_noname(default_conf):
HyperOptResolver.load_hyperopt(default_conf)
def test_hyperoptlossresolver(mocker, default_conf, caplog) -> None:
def test_hyperoptlossresolver(mocker, default_conf) -> None:
hl = DefaultHyperOptLoss
mocker.patch(
@ -227,14 +240,14 @@ def test_hyperoptlossresolver(mocker, default_conf, caplog) -> None:
assert hasattr(x, "hyperopt_loss_function")
def test_hyperoptlossresolver_wrongname(mocker, default_conf, caplog) -> None:
def test_hyperoptlossresolver_wrongname(default_conf) -> None:
default_conf.update({'hyperopt_loss': "NonExistingLossClass"})
with pytest.raises(OperationalException, match=r'Impossible to load HyperoptLoss.*'):
HyperOptLossResolver.load_hyperoptloss(default_conf)
def test_start_not_installed(mocker, default_conf, caplog, import_fails) -> None:
def test_start_not_installed(mocker, default_conf, import_fails) -> None:
start_mock = MagicMock()
patched_configuration_load_config_file(mocker, default_conf)
@ -245,6 +258,8 @@ def test_start_not_installed(mocker, default_conf, caplog, import_fails) -> None
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt-path',
str(Path(__file__).parent / "hyperopts"),
'--epochs', '5'
]
pargs = get_args(args)
@ -253,9 +268,9 @@ def test_start_not_installed(mocker, default_conf, caplog, import_fails) -> None
start_hyperopt(pargs)
def test_start(mocker, default_conf, caplog) -> None:
def test_start(mocker, hyperopt_conf, caplog) -> None:
start_mock = MagicMock()
patched_configuration_load_config_file(mocker, default_conf)
patched_configuration_load_config_file(mocker, hyperopt_conf)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.start', start_mock)
patch_exchange(mocker)
@ -272,8 +287,8 @@ def test_start(mocker, default_conf, caplog) -> None:
assert start_mock.call_count == 1
def test_start_no_data(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
def test_start_no_data(mocker, hyperopt_conf) -> None:
patched_configuration_load_config_file(mocker, hyperopt_conf)
mocker.patch('freqtrade.data.history.load_pair_history', MagicMock(return_value=pd.DataFrame))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timerange',
@ -293,9 +308,9 @@ def test_start_no_data(mocker, default_conf, caplog) -> None:
start_hyperopt(pargs)
def test_start_filelock(mocker, default_conf, caplog) -> None:
start_mock = MagicMock(side_effect=Timeout(Hyperopt.get_lock_filename(default_conf)))
patched_configuration_load_config_file(mocker, default_conf)
def test_start_filelock(mocker, hyperopt_conf, caplog) -> None:
start_mock = MagicMock(side_effect=Timeout(Hyperopt.get_lock_filename(hyperopt_conf)))
patched_configuration_load_config_file(mocker, hyperopt_conf)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.start', start_mock)
patch_exchange(mocker)
@ -519,7 +534,7 @@ def test_roi_table_generation(hyperopt) -> None:
assert hyperopt.custom_hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
def test_start_calls_optimizer(mocker, default_conf, caplog, capsys) -> None:
def test_start_calls_optimizer(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
@ -545,15 +560,9 @@ def test_start_calls_optimizer(mocker, default_conf, caplog, capsys) -> None:
)
patch_exchange(mocker)
# Co-test loading timeframe from strategy
del default_conf['timeframe']
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'epochs': 1,
'timerange': None,
'spaces': 'default',
'hyperopt_jobs': 1, })
del hyperopt_conf['timeframe']
hyperopt = Hyperopt(default_conf)
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
@ -569,7 +578,7 @@ def test_start_calls_optimizer(mocker, default_conf, caplog, capsys) -> None:
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
assert hasattr(hyperopt, "max_open_trades")
assert hyperopt.max_open_trades == default_conf['max_open_trades']
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
assert hasattr(hyperopt, "position_stacking")
@ -686,13 +695,36 @@ def test_buy_strategy_generator(hyperopt, testdatadir) -> None:
assert 1 in result['buy']
def test_generate_optimizer(mocker, default_conf) -> None:
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'timerange': None,
'spaces': 'all',
'hyperopt_min_trades': 1,
})
def test_sell_strategy_generator(hyperopt, testdatadir) -> None:
data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True)
dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
populate_sell_trend = hyperopt.custom_hyperopt.sell_strategy_generator(
{
'sell-adx-value': 20,
'sell-fastd-value': 75,
'sell-mfi-value': 80,
'sell-rsi-value': 20,
'sell-adx-enabled': True,
'sell-fastd-enabled': True,
'sell-mfi-enabled': True,
'sell-rsi-enabled': True,
'sell-trigger': 'sell-bb_upper'
}
)
result = populate_sell_trend(dataframe, {'pair': 'UNITTEST/BTC'})
# Check if some indicators are generated. We will not test all of them
print(result)
assert 'sell' in result
assert 1 in result['sell']
def test_generate_optimizer(mocker, hyperopt_conf) -> None:
hyperopt_conf.update({'spaces': 'all',
'hyperopt_min_trades': 1,
})
trades = [
('TRX/BTC', 0.023117, 0.000233, 100)
@ -744,8 +776,10 @@ def test_generate_optimizer(mocker, default_conf) -> None:
}
response_expected = {
'loss': 1.9840569076926293,
'results_explanation': (' 1 trades. Avg profit 2.31%. Total profit 0.00023300 BTC '
'( 2.31\N{GREEK CAPITAL LETTER SIGMA}%). Avg duration 100.0 min.'
'results_explanation': (' 1 trades. 1/0/0 Wins/Draws/Losses. '
'Avg profit 2.31%. Median profit 2.31%. Total profit '
'0.00023300 BTC ( 2.31\N{GREEK CAPITAL LETTER SIGMA}%). '
'Avg duration 100.0 min.'
).encode(locale.getpreferredencoding(), 'replace').decode('utf-8'),
'params_details': {'buy': {'adx-enabled': False,
'adx-value': 0,
@ -776,55 +810,47 @@ def test_generate_optimizer(mocker, default_conf) -> None:
'trailing_stop_positive_offset': 0.07}},
'params_dict': optimizer_param,
'results_metrics': {'avg_profit': 2.3117,
'draws': 0,
'duration': 100.0,
'losses': 0,
'winsdrawslosses': '1/0/0',
'median_profit': 2.3117,
'profit': 2.3117,
'total_profit': 0.000233,
'trade_count': 1},
'trade_count': 1,
'wins': 1},
'total_profit': 0.00023300
}
hyperopt = Hyperopt(default_conf)
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.dimensions = hyperopt.hyperopt_space()
generate_optimizer_value = hyperopt.generate_optimizer(list(optimizer_param.values()))
assert generate_optimizer_value == response_expected
def test_clean_hyperopt(mocker, default_conf, caplog):
def test_clean_hyperopt(mocker, hyperopt_conf, caplog):
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'epochs': 1,
'timerange': None,
'spaces': 'default',
'hyperopt_jobs': 1,
})
mocker.patch("freqtrade.optimize.hyperopt.Path.is_file", MagicMock(return_value=True))
unlinkmock = mocker.patch("freqtrade.optimize.hyperopt.Path.unlink", MagicMock())
h = Hyperopt(default_conf)
h = Hyperopt(hyperopt_conf)
assert unlinkmock.call_count == 2
assert log_has(f"Removing `{h.data_pickle_file}`.", caplog)
def test_continue_hyperopt(mocker, default_conf, caplog):
def test_continue_hyperopt(mocker, hyperopt_conf, caplog):
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'epochs': 1,
'timerange': None,
'spaces': 'default',
'hyperopt_jobs': 1,
'hyperopt_continue': True
})
hyperopt_conf.update({'hyperopt_continue': True})
mocker.patch("freqtrade.optimize.hyperopt.Path.is_file", MagicMock(return_value=True))
unlinkmock = mocker.patch("freqtrade.optimize.hyperopt.Path.unlink", MagicMock())
Hyperopt(default_conf)
Hyperopt(hyperopt_conf)
assert unlinkmock.call_count == 0
assert log_has("Continuing on previous hyperopt results.", caplog)
def test_print_json_spaces_all(mocker, default_conf, caplog, capsys) -> None:
def test_print_json_spaces_all(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
@ -855,16 +881,12 @@ def test_print_json_spaces_all(mocker, default_conf, caplog, capsys) -> None:
)
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'epochs': 1,
'timerange': None,
'spaces': 'all',
'hyperopt_jobs': 1,
'print_json': True,
})
hyperopt_conf.update({'spaces': 'all',
'hyperopt_jobs': 1,
'print_json': True,
})
hyperopt = Hyperopt(default_conf)
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
@ -883,7 +905,7 @@ def test_print_json_spaces_all(mocker, default_conf, caplog, capsys) -> None:
assert dumper.call_count == 2
def test_print_json_spaces_default(mocker, default_conf, caplog, capsys) -> None:
def test_print_json_spaces_default(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
@ -913,16 +935,9 @@ def test_print_json_spaces_default(mocker, default_conf, caplog, capsys) -> None
)
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'epochs': 1,
'timerange': None,
'spaces': 'default',
'hyperopt_jobs': 1,
'print_json': True,
})
hyperopt_conf.update({'print_json': True})
hyperopt = Hyperopt(default_conf)
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
@ -937,7 +952,7 @@ def test_print_json_spaces_default(mocker, default_conf, caplog, capsys) -> None
assert dumper.call_count == 2
def test_print_json_spaces_roi_stoploss(mocker, default_conf, caplog, capsys) -> None:
def test_print_json_spaces_roi_stoploss(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
@ -963,16 +978,12 @@ def test_print_json_spaces_roi_stoploss(mocker, default_conf, caplog, capsys) ->
)
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'epochs': 1,
'timerange': None,
'spaces': 'roi stoploss',
'hyperopt_jobs': 1,
'print_json': True,
})
hyperopt_conf.update({'spaces': 'roi stoploss',
'hyperopt_jobs': 1,
'print_json': True,
})
hyperopt = Hyperopt(default_conf)
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
@ -987,7 +998,7 @@ def test_print_json_spaces_roi_stoploss(mocker, default_conf, caplog, capsys) ->
assert dumper.call_count == 2
def test_simplified_interface_roi_stoploss(mocker, default_conf, caplog, capsys) -> None:
def test_simplified_interface_roi_stoploss(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
@ -1012,14 +1023,9 @@ def test_simplified_interface_roi_stoploss(mocker, default_conf, caplog, capsys)
)
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'epochs': 1,
'timerange': None,
'spaces': 'roi stoploss',
'hyperopt_jobs': 1, })
hyperopt_conf.update({'spaces': 'roi stoploss'})
hyperopt = Hyperopt(default_conf)
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
@ -1040,11 +1046,11 @@ def test_simplified_interface_roi_stoploss(mocker, default_conf, caplog, capsys)
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
assert hasattr(hyperopt, "max_open_trades")
assert hyperopt.max_open_trades == default_conf['max_open_trades']
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
assert hasattr(hyperopt, "position_stacking")
def test_simplified_interface_all_failed(mocker, default_conf, caplog, capsys) -> None:
def test_simplified_interface_all_failed(mocker, hyperopt_conf) -> None:
mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
@ -1055,14 +1061,9 @@ def test_simplified_interface_all_failed(mocker, default_conf, caplog, capsys) -
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'epochs': 1,
'timerange': None,
'spaces': 'all',
'hyperopt_jobs': 1, })
hyperopt_conf.update({'spaces': 'all', })
hyperopt = Hyperopt(default_conf)
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
@ -1075,7 +1076,7 @@ def test_simplified_interface_all_failed(mocker, default_conf, caplog, capsys) -
hyperopt.start()
def test_simplified_interface_buy(mocker, default_conf, caplog, capsys) -> None:
def test_simplified_interface_buy(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
@ -1100,14 +1101,9 @@ def test_simplified_interface_buy(mocker, default_conf, caplog, capsys) -> None:
)
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'epochs': 1,
'timerange': None,
'spaces': 'buy',
'hyperopt_jobs': 1, })
hyperopt_conf.update({'spaces': 'buy'})
hyperopt = Hyperopt(default_conf)
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
@ -1128,11 +1124,11 @@ def test_simplified_interface_buy(mocker, default_conf, caplog, capsys) -> None:
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
assert hasattr(hyperopt, "max_open_trades")
assert hyperopt.max_open_trades == default_conf['max_open_trades']
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
assert hasattr(hyperopt, "position_stacking")
def test_simplified_interface_sell(mocker, default_conf, caplog, capsys) -> None:
def test_simplified_interface_sell(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
@ -1157,14 +1153,9 @@ def test_simplified_interface_sell(mocker, default_conf, caplog, capsys) -> None
)
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'epochs': 1,
'timerange': None,
'spaces': 'sell',
'hyperopt_jobs': 1, })
hyperopt_conf.update({'spaces': 'sell', })
hyperopt = Hyperopt(default_conf)
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
@ -1185,7 +1176,7 @@ def test_simplified_interface_sell(mocker, default_conf, caplog, capsys) -> None
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
assert hasattr(hyperopt, "max_open_trades")
assert hyperopt.max_open_trades == default_conf['max_open_trades']
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
assert hasattr(hyperopt, "position_stacking")
@ -1195,7 +1186,7 @@ def test_simplified_interface_sell(mocker, default_conf, caplog, capsys) -> None
('sell_strategy_generator', 'sell'),
('sell_indicator_space', 'sell'),
])
def test_simplified_interface_failed(mocker, default_conf, caplog, capsys, method, space) -> None:
def test_simplified_interface_failed(mocker, hyperopt_conf, method, space) -> None:
mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
@ -1206,14 +1197,9 @@ def test_simplified_interface_failed(mocker, default_conf, caplog, capsys, metho
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'hyperopt': 'DefaultHyperOpt',
'epochs': 1,
'timerange': None,
'spaces': space,
'hyperopt_jobs': 1, })
hyperopt_conf.update({'spaces': space})
hyperopt = Hyperopt(default_conf)
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})

View File

@ -1,16 +1,29 @@
import re
from datetime import timedelta
from pathlib import Path
import pandas as pd
import pytest
from arrow import Arrow
from freqtrade.configuration import TimeRange
from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.data import history
from freqtrade.data.btanalysis import (get_latest_backtest_filename,
load_backtest_data)
from freqtrade.edge import PairInfo
from freqtrade.optimize.optimize_reports import (
generate_pair_metrics, generate_edge_table, generate_sell_reason_stats,
text_table_bt_results, text_table_sell_reason, generate_strategy_metrics,
text_table_strategy, store_backtest_result)
from freqtrade.optimize.optimize_reports import (generate_backtest_stats,
generate_daily_stats,
generate_edge_table,
generate_pair_metrics,
generate_sell_reason_stats,
generate_strategy_metrics,
store_backtest_stats,
text_table_bt_results,
text_table_sell_reason,
text_table_strategy)
from freqtrade.strategy.interface import SellType
from tests.conftest import patch_exchange
from tests.data.test_history import _backup_file, _clean_test_file
def test_text_table_bt_results(default_conf, mocker):
@ -43,6 +56,115 @@ def test_text_table_bt_results(default_conf, mocker):
assert text_table_bt_results(pair_results, stake_currency='BTC') == result_str
def test_generate_backtest_stats(default_conf, testdatadir):
results = {'DefStrat': pd.DataFrame({"pair": ["UNITTEST/BTC", "UNITTEST/BTC",
"UNITTEST/BTC", "UNITTEST/BTC"],
"profit_percent": [0.003312, 0.010801, 0.013803, 0.002780],
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
"open_date": [Arrow(2017, 11, 14, 19, 32, 00).datetime,
Arrow(2017, 11, 14, 21, 36, 00).datetime,
Arrow(2017, 11, 14, 22, 12, 00).datetime,
Arrow(2017, 11, 14, 22, 44, 00).datetime],
"close_date": [Arrow(2017, 11, 14, 21, 35, 00).datetime,
Arrow(2017, 11, 14, 22, 10, 00).datetime,
Arrow(2017, 11, 14, 22, 43, 00).datetime,
Arrow(2017, 11, 14, 22, 58, 00).datetime],
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
"trade_duration": [123, 34, 31, 14],
"open_at_end": [False, False, False, True],
"sell_reason": [SellType.ROI, SellType.STOP_LOSS,
SellType.ROI, SellType.FORCE_SELL]
})}
timerange = TimeRange.parse_timerange('1510688220-1510700340')
min_date = Arrow.fromtimestamp(1510688220)
max_date = Arrow.fromtimestamp(1510700340)
btdata = history.load_data(testdatadir, '1m', ['UNITTEST/BTC'], timerange=timerange,
fill_up_missing=True)
stats = generate_backtest_stats(default_conf, btdata, results, min_date, max_date)
assert isinstance(stats, dict)
assert 'strategy' in stats
assert 'DefStrat' in stats['strategy']
assert 'strategy_comparison' in stats
strat_stats = stats['strategy']['DefStrat']
assert strat_stats['backtest_start'] == min_date.datetime
assert strat_stats['backtest_end'] == max_date.datetime
assert strat_stats['total_trades'] == len(results['DefStrat'])
# Above sample had no loosing trade
assert strat_stats['max_drawdown'] == 0.0
results = {'DefStrat': pd.DataFrame(
{"pair": ["UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC"],
"profit_percent": [0.003312, 0.010801, -0.013803, 0.002780],
"profit_abs": [0.000003, 0.000011, -0.000014, 0.000003],
"open_date": [Arrow(2017, 11, 14, 19, 32, 00).datetime,
Arrow(2017, 11, 14, 21, 36, 00).datetime,
Arrow(2017, 11, 14, 22, 12, 00).datetime,
Arrow(2017, 11, 14, 22, 44, 00).datetime],
"close_date": [Arrow(2017, 11, 14, 21, 35, 00).datetime,
Arrow(2017, 11, 14, 22, 10, 00).datetime,
Arrow(2017, 11, 14, 22, 43, 00).datetime,
Arrow(2017, 11, 14, 22, 58, 00).datetime],
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
"close_rate": [0.002546, 0.003014, 0.0032903, 0.003217],
"trade_duration": [123, 34, 31, 14],
"open_at_end": [False, False, False, True],
"sell_reason": [SellType.ROI, SellType.STOP_LOSS,
SellType.ROI, SellType.FORCE_SELL]
})}
assert strat_stats['max_drawdown'] == 0.0
assert strat_stats['drawdown_start'] == Arrow.fromtimestamp(0).datetime
assert strat_stats['drawdown_end'] == Arrow.fromtimestamp(0).datetime
assert strat_stats['drawdown_end_ts'] == 0
assert strat_stats['drawdown_start_ts'] == 0
assert strat_stats['pairlist'] == ['UNITTEST/BTC']
# Test storing stats
filename = Path(testdatadir / 'btresult.json')
filename_last = Path(testdatadir / LAST_BT_RESULT_FN)
_backup_file(filename_last, copy_file=True)
assert not filename.is_file()
store_backtest_stats(filename, stats)
# get real Filename (it's btresult-<date>.json)
last_fn = get_latest_backtest_filename(filename_last.parent)
assert re.match(r"btresult-.*\.json", last_fn)
filename1 = (testdatadir / last_fn)
assert filename1.is_file()
content = filename1.read_text()
assert 'max_drawdown' in content
assert 'strategy' in content
assert 'pairlist' in content
assert filename_last.is_file()
_clean_test_file(filename_last)
filename1.unlink()
def test_store_backtest_stats(testdatadir, mocker):
dump_mock = mocker.patch('freqtrade.optimize.optimize_reports.file_dump_json')
store_backtest_stats(testdatadir, {})
assert dump_mock.call_count == 2
assert isinstance(dump_mock.call_args_list[0][0][0], Path)
assert str(dump_mock.call_args_list[0][0][0]).startswith(str(testdatadir/'backtest-result'))
dump_mock.reset_mock()
filename = testdatadir / 'testresult.json'
store_backtest_stats(filename, {})
assert dump_mock.call_count == 2
assert isinstance(dump_mock.call_args_list[0][0][0], Path)
# result will be testdatadir / testresult-<timestamp>.json
assert str(dump_mock.call_args_list[0][0][0]).startswith(str(testdatadir / 'testresult'))
def test_generate_pair_metrics(default_conf, mocker):
results = pd.DataFrame(
@ -68,6 +190,29 @@ def test_generate_pair_metrics(default_conf, mocker):
pytest.approx(pair_results[-1]['profit_sum_pct']) == pair_results[-1]['profit_sum'] * 100)
def test_generate_daily_stats(testdatadir):
filename = testdatadir / "backtest-result_new.json"
bt_data = load_backtest_data(filename)
res = generate_daily_stats(bt_data)
assert isinstance(res, dict)
assert round(res['backtest_best_day'], 4) == 0.1796
assert round(res['backtest_worst_day'], 4) == -0.1468
assert res['winning_days'] == 14
assert res['draw_days'] == 4
assert res['losing_days'] == 3
assert res['winner_holding_avg'] == timedelta(seconds=1440)
assert res['loser_holding_avg'] == timedelta(days=1, seconds=21420)
# Select empty dataframe!
res = generate_daily_stats(bt_data.loc[bt_data['open_date'] == '2000-01-01', :])
assert isinstance(res, dict)
assert round(res['backtest_best_day'], 4) == 0.0
assert res['winning_days'] == 0
assert res['draw_days'] == 0
assert res['losing_days'] == 0
def test_text_table_sell_reason(default_conf):
results = pd.DataFrame(
@ -188,77 +333,3 @@ def test_generate_edge_table(edge_conf, mocker):
assert generate_edge_table(results).count('| ETH/BTC |') == 1
assert generate_edge_table(results).count(
'| Risk Reward Ratio | Required Risk Reward | Expectancy |') == 1
def test_backtest_record(default_conf, fee, mocker):
names = []
records = []
patch_exchange(mocker)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch(
'freqtrade.optimize.optimize_reports.file_dump_json',
new=lambda n, r: (names.append(n), records.append(r))
)
results = {'DefStrat': pd.DataFrame({"pair": ["UNITTEST/BTC", "UNITTEST/BTC",
"UNITTEST/BTC", "UNITTEST/BTC"],
"profit_percent": [0.003312, 0.010801, 0.013803, 0.002780],
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
"open_time": [Arrow(2017, 11, 14, 19, 32, 00).datetime,
Arrow(2017, 11, 14, 21, 36, 00).datetime,
Arrow(2017, 11, 14, 22, 12, 00).datetime,
Arrow(2017, 11, 14, 22, 44, 00).datetime],
"close_time": [Arrow(2017, 11, 14, 21, 35, 00).datetime,
Arrow(2017, 11, 14, 22, 10, 00).datetime,
Arrow(2017, 11, 14, 22, 43, 00).datetime,
Arrow(2017, 11, 14, 22, 58, 00).datetime],
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
"open_index": [1, 119, 153, 185],
"close_index": [118, 151, 184, 199],
"trade_duration": [123, 34, 31, 14],
"open_at_end": [False, False, False, True],
"sell_reason": [SellType.ROI, SellType.STOP_LOSS,
SellType.ROI, SellType.FORCE_SELL]
})}
store_backtest_result(Path("backtest-result.json"), results)
# Assert file_dump_json was only called once
assert names == [Path('backtest-result.json')]
records = records[0]
# Ensure records are of correct type
assert len(records) == 4
# reset test to test with strategy name
names = []
records = []
results['Strat'] = results['DefStrat']
results['Strat2'] = results['DefStrat']
store_backtest_result(Path("backtest-result.json"), results)
assert names == [
Path('backtest-result-DefStrat.json'),
Path('backtest-result-Strat.json'),
Path('backtest-result-Strat2.json'),
]
records = records[0]
# Ensure records are of correct type
assert len(records) == 4
# ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117)
# Below follows just a typecheck of the schema/type of trade-records
oix = None
for (pair, profit, date_buy, date_sell, buy_index, dur,
openr, closer, open_at_end, sell_reason) in records:
assert pair == 'UNITTEST/BTC'
assert isinstance(profit, float)
# FIX: buy/sell should be converted to ints
assert isinstance(date_buy, float)
assert isinstance(date_sell, float)
assert isinstance(openr, float)
assert isinstance(closer, float)
assert isinstance(open_at_end, bool)
assert isinstance(sell_reason, str)
isinstance(buy_index, pd._libs.tslib.Timestamp)
if oix:
assert buy_index > oix
oix = buy_index
assert dur > 0

View File

@ -468,7 +468,9 @@ def test_pairlist_class(mocker, whitelist_conf, markets, pairlist):
# BCH/BTC not available
(['ETH/BTC', 'TKN/BTC', 'BCH/BTC'], "is not compatible with exchange"),
# BTT/BTC is inactive
(['ETH/BTC', 'TKN/BTC', 'BTT/BTC'], "Market is not active")
(['ETH/BTC', 'TKN/BTC', 'BTT/BTC'], "Market is not active"),
# XLTCUSDT is not a valid pair
(['ETH/BTC', 'TKN/BTC', 'XLTCUSDT'], "is not tradable with Freqtrade"),
])
def test__whitelist_for_active_markets(mocker, whitelist_conf, markets, pairlist, whitelist, caplog,
log_message, tickers):
@ -547,7 +549,7 @@ def test_agefilter_min_days_listed_too_small(mocker, default_conf, markets, tick
)
with pytest.raises(OperationalException,
match=r'AgeFilter requires min_days_listed must be >= 1'):
match=r'AgeFilter requires min_days_listed to be >= 1'):
get_patched_freqtradebot(mocker, default_conf)
@ -562,7 +564,7 @@ def test_agefilter_min_days_listed_too_large(mocker, default_conf, markets, tick
)
with pytest.raises(OperationalException,
match=r'AgeFilter requires min_days_listed must not exceed '
match=r'AgeFilter requires min_days_listed to not exceed '
r'exchange max request size \([0-9]+\)'):
get_patched_freqtradebot(mocker, default_conf)
@ -590,34 +592,58 @@ def test_agefilter_caching(mocker, markets, whitelist_conf_3, tickers, ohlcv_his
assert freqtrade.exchange.get_historic_ohlcv.call_count == previous_call_count
@pytest.mark.parametrize("pairlistconfig,expected", [
@pytest.mark.parametrize("pairlistconfig,desc_expected,exception_expected", [
({"method": "PriceFilter", "low_price_ratio": 0.001, "min_price": 0.00000010,
"max_price": 1.0}, "[{'PriceFilter': 'PriceFilter - Filtering pairs priced below "
"0.1% or below 0.00000010 or above 1.00000000.'}]"
"max_price": 1.0},
"[{'PriceFilter': 'PriceFilter - Filtering pairs priced below "
"0.1% or below 0.00000010 or above 1.00000000.'}]",
None
),
({"method": "PriceFilter", "low_price_ratio": 0.001, "min_price": 0.00000010},
"[{'PriceFilter': 'PriceFilter - Filtering pairs priced below 0.1% or below 0.00000010.'}]"
"[{'PriceFilter': 'PriceFilter - Filtering pairs priced below 0.1% or below 0.00000010.'}]",
None
),
({"method": "PriceFilter", "low_price_ratio": 0.001, "max_price": 1.00010000},
"[{'PriceFilter': 'PriceFilter - Filtering pairs priced below 0.1% or above 1.00010000.'}]"
"[{'PriceFilter': 'PriceFilter - Filtering pairs priced below 0.1% or above 1.00010000.'}]",
None
),
({"method": "PriceFilter", "min_price": 0.00002000},
"[{'PriceFilter': 'PriceFilter - Filtering pairs priced below 0.00002000.'}]"
"[{'PriceFilter': 'PriceFilter - Filtering pairs priced below 0.00002000.'}]",
None
),
({"method": "PriceFilter"},
"[{'PriceFilter': 'PriceFilter - No price filters configured.'}]"
"[{'PriceFilter': 'PriceFilter - No price filters configured.'}]",
None
),
({"method": "PriceFilter", "low_price_ratio": -0.001},
None,
"PriceFilter requires low_price_ratio to be >= 0"
), # OperationalException expected
({"method": "PriceFilter", "min_price": -0.00000010},
None,
"PriceFilter requires min_price to be >= 0"
), # OperationalException expected
({"method": "PriceFilter", "max_price": -1.00010000},
None,
"PriceFilter requires max_price to be >= 0"
), # OperationalException expected
])
def test_pricefilter_desc(mocker, whitelist_conf, markets, pairlistconfig, expected):
def test_pricefilter_desc(mocker, whitelist_conf, markets, pairlistconfig,
desc_expected, exception_expected):
mocker.patch.multiple('freqtrade.exchange.Exchange',
markets=PropertyMock(return_value=markets),
exchange_has=MagicMock(return_value=True)
)
whitelist_conf['pairlists'] = [pairlistconfig]
freqtrade = get_patched_freqtradebot(mocker, whitelist_conf)
short_desc = str(freqtrade.pairlists.short_desc())
assert short_desc == expected
if desc_expected is not None:
freqtrade = get_patched_freqtradebot(mocker, whitelist_conf)
short_desc = str(freqtrade.pairlists.short_desc())
assert short_desc == desc_expected
else: # OperationalException expected
with pytest.raises(OperationalException,
match=exception_expected):
freqtrade = get_patched_freqtradebot(mocker, whitelist_conf)
def test_pairlistmanager_no_pairlist(mocker, markets, whitelist_conf, caplog):

View File

@ -8,7 +8,7 @@ import pytest
from numpy import isnan
from freqtrade.edge import PairInfo
from freqtrade.exceptions import ExchangeError, TemporaryError
from freqtrade.exceptions import ExchangeError, InvalidOrderException, TemporaryError
from freqtrade.persistence import Trade
from freqtrade.rpc import RPC, RPCException
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
@ -79,7 +79,8 @@ def test_rpc_trade_status(default_conf, ticker, fee, mocker) -> None:
'open_rate': 1.098e-05,
'close_rate': None,
'current_rate': 1.099e-05,
'amount': 91.07468124,
'amount': 91.07468123,
'amount_requested': 91.07468123,
'stake_amount': 0.001,
'close_profit': None,
'close_profit_pct': None,
@ -100,6 +101,7 @@ def test_rpc_trade_status(default_conf, ticker, fee, mocker) -> None:
'initial_stop_loss_ratio': -0.1,
'stoploss_current_dist': -1.1080000000000002e-06,
'stoploss_current_dist_ratio': -0.10081893,
'stoploss_current_dist_pct': -10.08,
'stoploss_entry_dist': -0.00010475,
'stoploss_entry_dist_ratio': -0.10448878,
'open_order': None,
@ -142,7 +144,8 @@ def test_rpc_trade_status(default_conf, ticker, fee, mocker) -> None:
'open_rate': 1.098e-05,
'close_rate': None,
'current_rate': ANY,
'amount': 91.07468124,
'amount': 91.07468123,
'amount_requested': 91.07468123,
'stake_amount': 0.001,
'close_profit': None,
'close_profit_pct': None,
@ -163,6 +166,7 @@ def test_rpc_trade_status(default_conf, ticker, fee, mocker) -> None:
'initial_stop_loss_ratio': -0.1,
'stoploss_current_dist': ANY,
'stoploss_current_dist_ratio': ANY,
'stoploss_current_dist_pct': ANY,
'stoploss_entry_dist': -0.00010475,
'stoploss_entry_dist_ratio': -0.10448878,
'open_order': None,
@ -253,11 +257,11 @@ def test_rpc_daily_profit(default_conf, update, ticker, fee,
assert days['fiat_display_currency'] == default_conf['fiat_display_currency']
for day in days['data']:
# [datetime.date(2018, 1, 11), '0.00000000 BTC', '0.000 USD']
assert (day['abs_profit'] == '0.00000000' or
day['abs_profit'] == '0.00006217')
assert (day['abs_profit'] == 0.0 or
day['abs_profit'] == 0.00006217)
assert (day['fiat_value'] == '0.000' or
day['fiat_value'] == '0.767')
assert (day['fiat_value'] == 0.0 or
day['fiat_value'] == 0.76748865)
# ensure first day is current date
assert str(days['data'][0]['date']) == str(datetime.utcnow().date())
@ -291,6 +295,61 @@ def test_rpc_trade_history(mocker, default_conf, markets, fee):
assert trades['trades'][0]['pair'] == 'XRP/BTC'
def test_rpc_delete_trade(mocker, default_conf, fee, markets, caplog):
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
stoploss_mock = MagicMock()
cancel_mock = MagicMock()
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
markets=PropertyMock(return_value=markets),
cancel_order=cancel_mock,
cancel_stoploss_order=stoploss_mock,
)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
freqtradebot.strategy.order_types['stoploss_on_exchange'] = True
create_mock_trades(fee)
rpc = RPC(freqtradebot)
with pytest.raises(RPCException, match='invalid argument'):
rpc._rpc_delete('200')
create_mock_trades(fee)
trades = Trade.query.all()
trades[1].stoploss_order_id = '1234'
trades[2].stoploss_order_id = '1234'
assert len(trades) > 2
res = rpc._rpc_delete('1')
assert isinstance(res, dict)
assert res['result'] == 'success'
assert res['trade_id'] == '1'
assert res['cancel_order_count'] == 1
assert cancel_mock.call_count == 1
assert stoploss_mock.call_count == 0
cancel_mock.reset_mock()
stoploss_mock.reset_mock()
res = rpc._rpc_delete('2')
assert isinstance(res, dict)
assert cancel_mock.call_count == 1
assert stoploss_mock.call_count == 1
assert res['cancel_order_count'] == 2
stoploss_mock = mocker.patch('freqtrade.exchange.Exchange.cancel_stoploss_order',
side_effect=InvalidOrderException)
res = rpc._rpc_delete('3')
assert stoploss_mock.call_count == 1
stoploss_mock.reset_mock()
cancel_mock = mocker.patch('freqtrade.exchange.Exchange.cancel_order',
side_effect=InvalidOrderException)
res = rpc._rpc_delete('4')
assert cancel_mock.call_count == 1
assert stoploss_mock.call_count == 0
def test_rpc_trade_statistics(default_conf, ticker, ticker_sell_up, fee,
limit_buy_order, limit_sell_order, mocker) -> None:
mocker.patch.multiple(

View File

@ -10,10 +10,12 @@ from flask import Flask
from requests.auth import _basic_auth_str
from freqtrade.__init__ import __version__
from freqtrade.loggers import setup_logging, setup_logging_pre
from freqtrade.persistence import Trade
from freqtrade.rpc.api_server import BASE_URI, ApiServer
from freqtrade.state import State
from tests.conftest import get_patched_freqtradebot, log_has, patch_get_signal, create_mock_trades
from tests.conftest import (create_mock_trades, get_patched_freqtradebot,
log_has, patch_get_signal)
_TEST_USER = "FreqTrader"
_TEST_PASS = "SuperSecurePassword1!"
@ -21,6 +23,9 @@ _TEST_PASS = "SuperSecurePassword1!"
@pytest.fixture
def botclient(default_conf, mocker):
setup_logging_pre()
setup_logging(default_conf)
default_conf.update({"api_server": {"enabled": True,
"listen_ip_address": "127.0.0.1",
"listen_port": 8080,
@ -50,6 +55,12 @@ def client_get(client, url):
'Origin': 'http://example.com'})
def client_delete(client, url):
# Add fake Origin to ensure CORS kicks in
return client.delete(url, headers={'Authorization': _basic_auth_str(_TEST_USER, _TEST_PASS),
'Origin': 'http://example.com'})
def assert_response(response, expected_code=200, needs_cors=True):
assert response.status_code == expected_code
assert response.content_type == "application/json"
@ -81,20 +92,20 @@ def test_api_unauthorized(botclient):
assert rc.json == {'error': 'Unauthorized'}
# Change only username
ftbot.config['api_server']['username'] = "Ftrader"
ftbot.config['api_server']['username'] = 'Ftrader'
rc = client_get(client, f"{BASE_URI}/version")
assert_response(rc, 401)
assert rc.json == {'error': 'Unauthorized'}
# Change only password
ftbot.config['api_server']['username'] = _TEST_USER
ftbot.config['api_server']['password'] = "WrongPassword"
ftbot.config['api_server']['password'] = 'WrongPassword'
rc = client_get(client, f"{BASE_URI}/version")
assert_response(rc, 401)
assert rc.json == {'error': 'Unauthorized'}
ftbot.config['api_server']['username'] = "Ftrader"
ftbot.config['api_server']['password'] = "WrongPassword"
ftbot.config['api_server']['username'] = 'Ftrader'
ftbot.config['api_server']['password'] = 'WrongPassword'
rc = client_get(client, f"{BASE_URI}/version")
assert_response(rc, 401)
@ -352,7 +363,7 @@ def test_api_daily(botclient, mocker, ticker, fee, markets):
assert rc.json['data'][0]['date'] == str(datetime.utcnow().date())
def test_api_trades(botclient, mocker, ticker, fee, markets):
def test_api_trades(botclient, mocker, fee, markets):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
mocker.patch.multiple(
@ -376,6 +387,75 @@ def test_api_trades(botclient, mocker, ticker, fee, markets):
assert rc.json['trades_count'] == 1
def test_api_delete_trade(botclient, mocker, fee, markets):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
stoploss_mock = MagicMock()
cancel_mock = MagicMock()
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
markets=PropertyMock(return_value=markets),
cancel_order=cancel_mock,
cancel_stoploss_order=stoploss_mock,
)
rc = client_delete(client, f"{BASE_URI}/trades/1")
# Error - trade won't exist yet.
assert_response(rc, 502)
create_mock_trades(fee)
ftbot.strategy.order_types['stoploss_on_exchange'] = True
trades = Trade.query.all()
trades[1].stoploss_order_id = '1234'
assert len(trades) > 2
rc = client_delete(client, f"{BASE_URI}/trades/1")
assert_response(rc)
assert rc.json['result_msg'] == 'Deleted trade 1. Closed 1 open orders.'
assert len(trades) - 1 == len(Trade.query.all())
assert cancel_mock.call_count == 1
cancel_mock.reset_mock()
rc = client_delete(client, f"{BASE_URI}/trades/1")
# Trade is gone now.
assert_response(rc, 502)
assert cancel_mock.call_count == 0
assert len(trades) - 1 == len(Trade.query.all())
rc = client_delete(client, f"{BASE_URI}/trades/2")
assert_response(rc)
assert rc.json['result_msg'] == 'Deleted trade 2. Closed 2 open orders.'
assert len(trades) - 2 == len(Trade.query.all())
assert stoploss_mock.call_count == 1
def test_api_logs(botclient):
ftbot, client = botclient
rc = client_get(client, f"{BASE_URI}/logs")
assert_response(rc)
assert len(rc.json) == 2
assert 'logs' in rc.json
# Using a fixed comparison here would make this test fail!
assert rc.json['log_count'] > 10
assert len(rc.json['logs']) == rc.json['log_count']
assert isinstance(rc.json['logs'][0], list)
# date
assert isinstance(rc.json['logs'][0][0], str)
# created_timestamp
assert isinstance(rc.json['logs'][0][1], float)
assert isinstance(rc.json['logs'][0][2], str)
assert isinstance(rc.json['logs'][0][3], str)
assert isinstance(rc.json['logs'][0][4], str)
rc = client_get(client, f"{BASE_URI}/logs?limit=5")
assert_response(rc)
assert len(rc.json) == 2
assert 'logs' in rc.json
# Using a fixed comparison here would make this test fail!
assert rc.json['log_count'] == 5
assert len(rc.json['logs']) == rc.json['log_count']
def test_api_edge_disabled(botclient, mocker, ticker, fee, markets):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
@ -519,7 +599,8 @@ def test_api_status(botclient, mocker, ticker, fee, markets):
rc = client_get(client, f"{BASE_URI}/status")
assert_response(rc)
assert len(rc.json) == 1
assert rc.json == [{'amount': 91.07468124,
assert rc.json == [{'amount': 91.07468123,
'amount_requested': 91.07468123,
'base_currency': 'BTC',
'close_date': None,
'close_date_hum': None,
@ -552,6 +633,7 @@ def test_api_status(botclient, mocker, ticker, fee, markets):
'initial_stop_loss_ratio': -0.1,
'stoploss_current_dist': -1.1080000000000002e-06,
'stoploss_current_dist_ratio': -0.10081893,
'stoploss_current_dist_pct': -10.08,
'stoploss_entry_dist': -0.00010475,
'stoploss_entry_dist_ratio': -0.10448878,
'trade_id': 1,
@ -628,7 +710,7 @@ def test_api_forcebuy(botclient, mocker, fee):
assert rc.json == {"error": "Error querying _forcebuy: Forcebuy not enabled."}
# enable forcebuy
ftbot.config["forcebuy_enable"] = True
ftbot.config['forcebuy_enable'] = True
fbuy_mock = MagicMock(return_value=None)
mocker.patch("freqtrade.rpc.RPC._rpc_forcebuy", fbuy_mock)
@ -641,6 +723,7 @@ def test_api_forcebuy(botclient, mocker, fee):
fbuy_mock = MagicMock(return_value=Trade(
pair='ETH/ETH',
amount=1,
amount_requested=1,
exchange='bittrex',
stake_amount=1,
open_rate=0.245441,
@ -657,6 +740,7 @@ def test_api_forcebuy(botclient, mocker, fee):
data='{"pair": "ETH/BTC"}')
assert_response(rc)
assert rc.json == {'amount': 1,
'amount_requested': 1,
'trade_id': None,
'close_date': None,
'close_date_hum': None,
@ -693,7 +777,7 @@ def test_api_forcebuy(botclient, mocker, fee):
'min_rate': None,
'open_order_id': '123456',
'open_rate_requested': None,
'open_trade_price': 0.2460546025,
'open_trade_price': 0.24605460,
'sell_reason': None,
'sell_order_status': None,
'strategy': None,

View File

@ -16,6 +16,7 @@ from telegram.error import NetworkError
from freqtrade import __version__
from freqtrade.edge import PairInfo
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.loggers import setup_logging
from freqtrade.persistence import Trade
from freqtrade.rpc import RPCMessageType
from freqtrade.rpc.telegram import Telegram, authorized_only
@ -74,9 +75,9 @@ def test_telegram_init(default_conf, mocker, caplog) -> None:
message_str = ("rpc.telegram is listening for following commands: [['status'], ['profit'], "
"['balance'], ['start'], ['stop'], ['forcesell'], ['forcebuy'], ['trades'], "
"['performance'], ['daily'], ['count'], ['reload_config', 'reload_conf'], "
"['show_config', 'show_conf'], ['stopbuy'], ['whitelist'], ['blacklist'], "
"['edge'], ['help'], ['version']]")
"['delete'], ['performance'], ['daily'], ['count'], ['reload_config', "
"'reload_conf'], ['show_config', 'show_conf'], ['stopbuy'], "
"['whitelist'], ['blacklist'], ['logs'], ['edge'], ['help'], ['version']]")
assert log_has(message_str, caplog)
@ -145,7 +146,7 @@ def test_authorized_only_exception(default_conf, mocker, caplog) -> None:
assert log_has('Exception occurred within Telegram module', caplog)
def test_status(default_conf, update, mocker, fee, ticker,) -> None:
def test_telegram_status(default_conf, update, mocker, fee, ticker,) -> None:
update.message.chat.id = "123"
default_conf['telegram']['enabled'] = False
default_conf['telegram']['chat_id'] = "123"
@ -175,6 +176,8 @@ def test_status(default_conf, update, mocker, fee, ticker,) -> None:
'stop_loss': 1.099e-05,
'sell_order_status': None,
'initial_stop_loss_pct': -0.05,
'stoploss_current_dist': 1e-08,
'stoploss_current_dist_pct': -0.02,
'stop_loss_pct': -0.01,
'open_order': '(limit buy rem=0.00000000)'
}]),
@ -691,8 +694,8 @@ def test_reload_config_handle(default_conf, update, mocker) -> None:
assert 'reloading config' in msg_mock.call_args_list[0][0][0]
def test_forcesell_handle(default_conf, update, ticker, fee,
ticker_sell_up, mocker) -> None:
def test_telegram_forcesell_handle(default_conf, update, ticker, fee,
ticker_sell_up, mocker) -> None:
mocker.patch('freqtrade.rpc.rpc.CryptoToFiatConverter._find_price', return_value=15000.0)
rpc_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.send_msg', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram._init', MagicMock())
@ -731,7 +734,7 @@ def test_forcesell_handle(default_conf, update, ticker, fee,
'pair': 'ETH/BTC',
'gain': 'profit',
'limit': 1.173e-05,
'amount': 91.07468123861567,
'amount': 91.07468123,
'order_type': 'limit',
'open_rate': 1.098e-05,
'current_rate': 1.173e-05,
@ -745,8 +748,8 @@ def test_forcesell_handle(default_conf, update, ticker, fee,
} == last_msg
def test_forcesell_down_handle(default_conf, update, ticker, fee,
ticker_sell_down, mocker) -> None:
def test_telegram_forcesell_down_handle(default_conf, update, ticker, fee,
ticker_sell_down, mocker) -> None:
mocker.patch('freqtrade.rpc.fiat_convert.CryptoToFiatConverter._find_price',
return_value=15000.0)
rpc_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.send_msg', MagicMock())
@ -791,7 +794,7 @@ def test_forcesell_down_handle(default_conf, update, ticker, fee,
'pair': 'ETH/BTC',
'gain': 'loss',
'limit': 1.043e-05,
'amount': 91.07468123861567,
'amount': 91.07468123,
'order_type': 'limit',
'open_rate': 1.098e-05,
'current_rate': 1.043e-05,
@ -840,7 +843,7 @@ def test_forcesell_all_handle(default_conf, update, ticker, fee, mocker) -> None
'pair': 'ETH/BTC',
'gain': 'loss',
'limit': 1.099e-05,
'amount': 91.07468123861567,
'amount': 91.07468123,
'order_type': 'limit',
'open_rate': 1.098e-05,
'current_rate': 1.099e-05,
@ -1107,6 +1110,40 @@ def test_blacklist_static(default_conf, update, mocker) -> None:
assert freqtradebot.pairlists.blacklist == ["DOGE/BTC", "HOT/BTC", "ETH/BTC"]
def test_telegram_logs(default_conf, update, mocker) -> None:
msg_mock = MagicMock()
mocker.patch.multiple(
'freqtrade.rpc.telegram.Telegram',
_init=MagicMock(),
_send_msg=msg_mock
)
setup_logging(default_conf)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
telegram = Telegram(freqtradebot)
context = MagicMock()
context.args = []
telegram._logs(update=update, context=context)
assert msg_mock.call_count == 1
assert "freqtrade\\.rpc\\.telegram" in msg_mock.call_args_list[0][0][0]
msg_mock.reset_mock()
context.args = ["1"]
telegram._logs(update=update, context=context)
assert msg_mock.call_count == 1
msg_mock.reset_mock()
# Test with changed MaxMessageLength
mocker.patch('freqtrade.rpc.telegram.MAX_TELEGRAM_MESSAGE_LENGTH', 200)
context = MagicMock()
context.args = []
telegram._logs(update=update, context=context)
# Called at least 3 times. Exact times will change with unrelated changes to setup messages
# Therefore we don't test for this explicitly.
assert msg_mock.call_count > 3
def test_edge_disabled(default_conf, update, mocker) -> None:
msg_mock = MagicMock()
mocker.patch.multiple(
@ -1177,6 +1214,33 @@ def test_telegram_trades(mocker, update, default_conf, fee):
assert "<pre>" in msg_mock.call_args_list[0][0][0]
def test_telegram_delete_trade(mocker, update, default_conf, fee):
msg_mock = MagicMock()
mocker.patch.multiple(
'freqtrade.rpc.telegram.Telegram',
_init=MagicMock(),
_send_msg=msg_mock
)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
telegram = Telegram(freqtradebot)
context = MagicMock()
context.args = []
telegram._delete_trade(update=update, context=context)
assert "invalid argument" in msg_mock.call_args_list[0][0][0]
msg_mock.reset_mock()
create_mock_trades(fee)
context = MagicMock()
context.args = [1]
telegram._delete_trade(update=update, context=context)
msg_mock.call_count == 1
assert "Deleted trade 1." in msg_mock.call_args_list[0][0][0]
assert "Please make sure to take care of this asset" in msg_mock.call_args_list[0][0][0]
def test_help_handle(default_conf, update, mocker) -> None:
msg_mock = MagicMock()
mocker.patch.multiple(

View File

@ -1,6 +1,7 @@
# pragma pylint: disable=missing-docstring, C0103
import logging
from datetime import datetime, timedelta, timezone
from unittest.mock import MagicMock
import arrow
@ -8,12 +9,12 @@ import pytest
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import load_data
from freqtrade.exceptions import StrategyError
from freqtrade.persistence import Trade
from freqtrade.resolvers import StrategyResolver
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.data.dataprovider import DataProvider
from tests.conftest import log_has, log_has_re
from .strats.default_strategy import DefaultStrategy
@ -261,14 +262,14 @@ def test_min_roi_reached3(default_conf, fee) -> None:
strategy = StrategyResolver.load_strategy(default_conf)
strategy.minimal_roi = min_roi
trade = Trade(
pair='ETH/BTC',
stake_amount=0.001,
amount=5,
open_date=arrow.utcnow().shift(hours=-1).datetime,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
open_rate=1,
pair='ETH/BTC',
stake_amount=0.001,
amount=5,
open_date=arrow.utcnow().shift(hours=-1).datetime,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
open_rate=1,
)
assert not strategy.min_roi_reached(trade, 0.02, arrow.utcnow().shift(minutes=-56).datetime)
@ -387,6 +388,31 @@ def test_is_pair_locked(default_conf):
strategy.unlock_pair(pair)
assert not strategy.is_pair_locked(pair)
pair = 'BTC/USDT'
# Lock until 14:30
lock_time = datetime(2020, 5, 1, 14, 30, 0, tzinfo=timezone.utc)
strategy.lock_pair(pair, lock_time)
# Lock is in the past ...
assert not strategy.is_pair_locked(pair)
# latest candle is from 14:20, lock goes to 14:30
assert strategy.is_pair_locked(pair, lock_time + timedelta(minutes=-10))
assert strategy.is_pair_locked(pair, lock_time + timedelta(minutes=-50))
# latest candle is from 14:25 (lock should be lifted)
# Since this is the "new candle" available at 14:30
assert not strategy.is_pair_locked(pair, lock_time + timedelta(minutes=-4))
# Should not be locked after time expired
assert not strategy.is_pair_locked(pair, lock_time + timedelta(minutes=10))
# Change timeframe to 15m
strategy.timeframe = '15m'
# Candle from 14:14 - lock goes until 14:30
assert strategy.is_pair_locked(pair, lock_time + timedelta(minutes=-16))
assert strategy.is_pair_locked(pair, lock_time + timedelta(minutes=-15, seconds=-2))
# Candle from 14:15 - lock goes until 14:30
assert not strategy.is_pair_locked(pair, lock_time + timedelta(minutes=-15))
def test_is_informative_pairs_callback(default_conf):
default_conf.update({'strategy': 'TestStrategyLegacy'})

View File

@ -19,64 +19,64 @@ def test_parse_args_none() -> None:
def test_parse_args_defaults(mocker) -> None:
mocker.patch.object(Path, "is_file", MagicMock(side_effect=[False, True]))
mocker.patch.object(Path, 'is_file', MagicMock(side_effect=[False, True]))
args = Arguments(['trade']).get_parsed_arg()
assert args["config"] == ['config.json']
assert args["strategy_path"] is None
assert args["datadir"] is None
assert args["verbosity"] == 0
assert args['config'] == ['config.json']
assert args['strategy_path'] is None
assert args['datadir'] is None
assert args['verbosity'] == 0
def test_parse_args_default_userdatadir(mocker) -> None:
mocker.patch.object(Path, "is_file", MagicMock(return_value=True))
mocker.patch.object(Path, 'is_file', MagicMock(return_value=True))
args = Arguments(['trade']).get_parsed_arg()
# configuration defaults to user_data if that is available.
assert args["config"] == [str(Path('user_data/config.json'))]
assert args["strategy_path"] is None
assert args["datadir"] is None
assert args["verbosity"] == 0
assert args['config'] == [str(Path('user_data/config.json'))]
assert args['strategy_path'] is None
assert args['datadir'] is None
assert args['verbosity'] == 0
def test_parse_args_userdatadir(mocker) -> None:
mocker.patch.object(Path, "is_file", MagicMock(return_value=True))
mocker.patch.object(Path, 'is_file', MagicMock(return_value=True))
args = Arguments(['trade', '--user-data-dir', 'user_data']).get_parsed_arg()
# configuration defaults to user_data if that is available.
assert args["config"] == [str(Path('user_data/config.json'))]
assert args["strategy_path"] is None
assert args["datadir"] is None
assert args["verbosity"] == 0
assert args['config'] == [str(Path('user_data/config.json'))]
assert args['strategy_path'] is None
assert args['datadir'] is None
assert args['verbosity'] == 0
def test_parse_args_config() -> None:
args = Arguments(['trade', '-c', '/dev/null']).get_parsed_arg()
assert args["config"] == ['/dev/null']
assert args['config'] == ['/dev/null']
args = Arguments(['trade', '--config', '/dev/null']).get_parsed_arg()
assert args["config"] == ['/dev/null']
assert args['config'] == ['/dev/null']
args = Arguments(['trade', '--config', '/dev/null',
'--config', '/dev/zero'],).get_parsed_arg()
assert args["config"] == ['/dev/null', '/dev/zero']
assert args['config'] == ['/dev/null', '/dev/zero']
def test_parse_args_db_url() -> None:
args = Arguments(['trade', '--db-url', 'sqlite:///test.sqlite']).get_parsed_arg()
assert args["db_url"] == 'sqlite:///test.sqlite'
assert args['db_url'] == 'sqlite:///test.sqlite'
def test_parse_args_verbose() -> None:
args = Arguments(['trade', '-v']).get_parsed_arg()
assert args["verbosity"] == 1
assert args['verbosity'] == 1
args = Arguments(['trade', '--verbose']).get_parsed_arg()
assert args["verbosity"] == 1
assert args['verbosity'] == 1
def test_common_scripts_options() -> None:
args = Arguments(['download-data', '-p', 'ETH/BTC', 'XRP/BTC']).get_parsed_arg()
assert args["pairs"] == ['ETH/BTC', 'XRP/BTC']
assert "func" in args
assert args['pairs'] == ['ETH/BTC', 'XRP/BTC']
assert 'func' in args
def test_parse_args_version() -> None:
@ -91,7 +91,7 @@ def test_parse_args_invalid() -> None:
def test_parse_args_strategy() -> None:
args = Arguments(['trade', '--strategy', 'SomeStrategy']).get_parsed_arg()
assert args["strategy"] == 'SomeStrategy'
assert args['strategy'] == 'SomeStrategy'
def test_parse_args_strategy_invalid() -> None:
@ -101,7 +101,7 @@ def test_parse_args_strategy_invalid() -> None:
def test_parse_args_strategy_path() -> None:
args = Arguments(['trade', '--strategy-path', '/some/path']).get_parsed_arg()
assert args["strategy_path"] == '/some/path'
assert args['strategy_path'] == '/some/path'
def test_parse_args_strategy_path_invalid() -> None:
@ -127,13 +127,13 @@ def test_parse_args_backtesting_custom() -> None:
'SampleStrategy'
]
call_args = Arguments(args).get_parsed_arg()
assert call_args["config"] == ['test_conf.json']
assert call_args["verbosity"] == 0
assert call_args["command"] == 'backtesting'
assert call_args["func"] is not None
assert call_args["timeframe"] == '1m'
assert type(call_args["strategy_list"]) is list
assert len(call_args["strategy_list"]) == 2
assert call_args['config'] == ['test_conf.json']
assert call_args['verbosity'] == 0
assert call_args['command'] == 'backtesting'
assert call_args['func'] is not None
assert call_args['timeframe'] == '1m'
assert type(call_args['strategy_list']) is list
assert len(call_args['strategy_list']) == 2
def test_parse_args_hyperopt_custom() -> None:
@ -144,13 +144,13 @@ def test_parse_args_hyperopt_custom() -> None:
'--spaces', 'buy'
]
call_args = Arguments(args).get_parsed_arg()
assert call_args["config"] == ['test_conf.json']
assert call_args["epochs"] == 20
assert call_args["verbosity"] == 0
assert call_args["command"] == 'hyperopt'
assert call_args["spaces"] == ['buy']
assert call_args["func"] is not None
assert callable(call_args["func"])
assert call_args['config'] == ['test_conf.json']
assert call_args['epochs'] == 20
assert call_args['verbosity'] == 0
assert call_args['command'] == 'hyperopt'
assert call_args['spaces'] == ['buy']
assert call_args['func'] is not None
assert callable(call_args['func'])
def test_download_data_options() -> None:
@ -163,10 +163,10 @@ def test_download_data_options() -> None:
]
pargs = Arguments(args).get_parsed_arg()
assert pargs["pairs_file"] == 'file_with_pairs'
assert pargs["datadir"] == 'datadir/directory'
assert pargs["days"] == 30
assert pargs["exchange"] == 'binance'
assert pargs['pairs_file'] == 'file_with_pairs'
assert pargs['datadir'] == 'datadir/directory'
assert pargs['days'] == 30
assert pargs['exchange'] == 'binance'
def test_plot_dataframe_options() -> None:
@ -180,10 +180,10 @@ def test_plot_dataframe_options() -> None:
]
pargs = Arguments(args).get_parsed_arg()
assert pargs["indicators1"] == ["sma10", "sma100"]
assert pargs["indicators2"] == ["macd", "fastd", "fastk"]
assert pargs["plot_limit"] == 30
assert pargs["pairs"] == ["UNITTEST/BTC"]
assert pargs['indicators1'] == ['sma10', 'sma100']
assert pargs['indicators2'] == ['macd', 'fastd', 'fastk']
assert pargs['plot_limit'] == 30
assert pargs['pairs'] == ['UNITTEST/BTC']
def test_plot_profit_options() -> None:
@ -191,66 +191,66 @@ def test_plot_profit_options() -> None:
'plot-profit',
'-p', 'UNITTEST/BTC',
'--trade-source', 'DB',
"--db-url", "sqlite:///whatever.sqlite",
'--db-url', 'sqlite:///whatever.sqlite',
]
pargs = Arguments(args).get_parsed_arg()
assert pargs["trade_source"] == "DB"
assert pargs["pairs"] == ["UNITTEST/BTC"]
assert pargs["db_url"] == "sqlite:///whatever.sqlite"
assert pargs['trade_source'] == 'DB'
assert pargs['pairs'] == ['UNITTEST/BTC']
assert pargs['db_url'] == 'sqlite:///whatever.sqlite'
def test_config_notallowed(mocker) -> None:
mocker.patch.object(Path, "is_file", MagicMock(return_value=False))
mocker.patch.object(Path, 'is_file', MagicMock(return_value=False))
args = [
'create-userdir',
]
pargs = Arguments(args).get_parsed_arg()
assert "config" not in pargs
assert 'config' not in pargs
# When file exists:
mocker.patch.object(Path, "is_file", MagicMock(return_value=True))
mocker.patch.object(Path, 'is_file', MagicMock(return_value=True))
args = [
'create-userdir',
]
pargs = Arguments(args).get_parsed_arg()
# config is not added even if it exists, since create-userdir is in the notallowed list
assert "config" not in pargs
assert 'config' not in pargs
def test_config_notrequired(mocker) -> None:
mocker.patch.object(Path, "is_file", MagicMock(return_value=False))
mocker.patch.object(Path, 'is_file', MagicMock(return_value=False))
args = [
'download-data',
]
pargs = Arguments(args).get_parsed_arg()
assert pargs["config"] is None
assert pargs['config'] is None
# When file exists:
mocker.patch.object(Path, "is_file", MagicMock(side_effect=[False, True]))
mocker.patch.object(Path, 'is_file', MagicMock(side_effect=[False, True]))
args = [
'download-data',
]
pargs = Arguments(args).get_parsed_arg()
# config is added if it exists
assert pargs["config"] == ['config.json']
assert pargs['config'] == ['config.json']
def test_check_int_positive() -> None:
assert check_int_positive("3") == 3
assert check_int_positive("1") == 1
assert check_int_positive("100") == 100
assert check_int_positive('3') == 3
assert check_int_positive('1') == 1
assert check_int_positive('100') == 100
with pytest.raises(argparse.ArgumentTypeError):
check_int_positive("-2")
check_int_positive('-2')
with pytest.raises(argparse.ArgumentTypeError):
check_int_positive("0")
check_int_positive('0')
with pytest.raises(argparse.ArgumentTypeError):
check_int_positive("3.5")
check_int_positive('3.5')
with pytest.raises(argparse.ArgumentTypeError):
check_int_positive("DeadBeef")
check_int_positive('DeadBeef')

View File

@ -21,7 +21,7 @@ from freqtrade.configuration.deprecated_settings import (
from freqtrade.configuration.load_config import load_config_file, log_config_error_range
from freqtrade.constants import DEFAULT_DB_DRYRUN_URL, DEFAULT_DB_PROD_URL
from freqtrade.exceptions import OperationalException
from freqtrade.loggers import _set_loggers, setup_logging
from freqtrade.loggers import _set_loggers, setup_logging, setup_logging_pre
from freqtrade.state import RunMode
from tests.conftest import (log_has, log_has_re,
patched_configuration_load_config_file)
@ -674,10 +674,12 @@ def test_set_loggers_syslog(mocker):
'logfile': 'syslog:/dev/log',
}
setup_logging_pre()
setup_logging(config)
assert len(logger.handlers) == 2
assert len(logger.handlers) == 3
assert [x for x in logger.handlers if type(x) == logging.handlers.SysLogHandler]
assert [x for x in logger.handlers if type(x) == logging.StreamHandler]
assert [x for x in logger.handlers if type(x) == logging.handlers.BufferingHandler]
# reset handlers to not break pytest
logger.handlers = orig_handlers
@ -727,7 +729,10 @@ def test_set_logfile(default_conf, mocker):
assert validated_conf['logfile'] == "test_file.log"
f = Path("test_file.log")
assert f.is_file()
f.unlink()
try:
f.unlink()
except Exception:
pass
def test_load_config_warn_forcebuy(default_conf, mocker, caplog) -> None:
@ -1005,7 +1010,7 @@ def test_pairlist_resolving_fallback(mocker):
args = Arguments(arglist).get_parsed_arg()
# Fix flaky tests if config.json exists
args["config"] = None
args['config'] = None
configuration = Configuration(args, RunMode.OTHER)
config = configuration.get_config()

View File

@ -2,7 +2,8 @@
# Test Documentation boxes -
# !!! <TYPE>: is not allowed!
# !!! <TYPE> "title" - Title needs to be quoted!
grep -Er '^!{3}\s\S+:|^!{3}\s\S+\s[^"]' docs/*
# !!! <TYPE> Spaces at the beginning are not allowed
grep -Er '^!{3}\s\S+:|^!{3}\s\S+\s[^"]|^\s+!{3}\s\S+' docs/*
if [ $? -ne 0 ]; then
echo "Docs test success."

View File

@ -320,7 +320,7 @@ def test_edge_overrides_stoploss(limit_buy_order, fee, caplog, mocker, edge_conf
# stoploss shoud be hit
assert freqtrade.handle_trade(trade) is True
assert log_has('Executing Sell for NEO/BTC. Reason: SellType.STOP_LOSS', caplog)
assert log_has('Executing Sell for NEO/BTC. Reason: stop_loss', caplog)
assert trade.sell_reason == SellType.STOP_LOSS.value
@ -595,7 +595,7 @@ def test_create_trade_minimal_amount(default_conf, ticker, limit_buy_order,
freqtrade.create_trade('ETH/BTC')
rate, amount = buy_mock.call_args[1]['rate'], buy_mock.call_args[1]['amount']
assert rate * amount >= default_conf['stake_amount']
assert rate * amount <= default_conf['stake_amount']
def test_create_trade_too_small_stake_amount(default_conf, ticker, limit_buy_order,
@ -782,7 +782,7 @@ def test_process_trade_creation(default_conf, ticker, limit_buy_order,
assert trade.open_date is not None
assert trade.exchange == 'bittrex'
assert trade.open_rate == 0.00001098
assert trade.amount == 91.07468123861567
assert trade.amount == 91.07468123
assert log_has(
'Buy signal found: about create a new trade with stake_amount: 0.001 ...', caplog
@ -953,6 +953,7 @@ def test_process_informative_pairs_added(default_conf, ticker, mocker) -> None:
])
def test_get_buy_rate(mocker, default_conf, caplog, side, ask, bid,
last, last_ab, expected) -> None:
caplog.set_level(logging.DEBUG)
default_conf['bid_strategy']['ask_last_balance'] = last_ab
default_conf['bid_strategy']['price_side'] = side
freqtrade = get_patched_freqtradebot(mocker, default_conf)
@ -1009,7 +1010,7 @@ def test_execute_buy(mocker, default_conf, fee, limit_buy_order) -> None:
call_args = buy_mm.call_args_list[0][1]
assert call_args['pair'] == pair
assert call_args['rate'] == bid
assert call_args['amount'] == stake_amount / bid
assert call_args['amount'] == round(stake_amount / bid, 8)
buy_rate_mock.reset_mock()
# Should create an open trade with an open order id
@ -1029,7 +1030,7 @@ def test_execute_buy(mocker, default_conf, fee, limit_buy_order) -> None:
call_args = buy_mm.call_args_list[1][1]
assert call_args['pair'] == pair
assert call_args['rate'] == fix_price
assert call_args['amount'] == stake_amount / fix_price
assert call_args['amount'] == round(stake_amount / fix_price, 8)
# In case of closed order
limit_buy_order['status'] = 'closed'
@ -1301,7 +1302,7 @@ def test_create_stoploss_order_invalid_order(mocker, default_conf, caplog, fee,
freqtrade.enter_positions()
trade = Trade.query.first()
caplog.clear()
freqtrade.create_stoploss_order(trade, 200, 199)
freqtrade.create_stoploss_order(trade, 200)
assert trade.stoploss_order_id is None
assert trade.sell_reason == SellType.EMERGENCY_SELL.value
assert log_has("Unable to place a stoploss order on exchange. ", caplog)
@ -1407,7 +1408,7 @@ def test_handle_stoploss_on_exchange_trailing(mocker, default_conf, fee, caplog,
assert freqtrade.handle_stoploss_on_exchange(trade) is False
cancel_order_mock.assert_called_once_with(100, 'ETH/BTC')
stoploss_order_mock.assert_called_once_with(amount=85.32423208191126,
stoploss_order_mock.assert_called_once_with(amount=85.32423208,
pair='ETH/BTC',
order_types=freqtrade.strategy.order_types,
stop_price=0.00002346 * 0.95)
@ -1595,7 +1596,7 @@ def test_tsl_on_exchange_compatible_with_edge(mocker, edge_conf, fee, caplog,
# stoploss should be set to 1% as trailing is on
assert trade.stop_loss == 0.00002346 * 0.99
cancel_order_mock.assert_called_once_with(100, 'NEO/BTC')
stoploss_order_mock.assert_called_once_with(amount=2132892.491467577,
stoploss_order_mock.assert_called_once_with(amount=2132892.49146757,
pair='NEO/BTC',
order_types=freqtrade.strategy.order_types,
stop_price=0.00002346 * 0.99)
@ -1660,6 +1661,7 @@ def test_exit_positions_exception(mocker, default_conf, limit_buy_order, caplog)
trade = MagicMock()
trade.open_order_id = None
trade.open_fee = 0.001
trade.pair = 'ETH/BTC'
trades = [trade]
# Test raise of DependencyException exception
@ -1669,7 +1671,7 @@ def test_exit_positions_exception(mocker, default_conf, limit_buy_order, caplog)
)
n = freqtrade.exit_positions(trades)
assert n == 0
assert log_has('Unable to sell trade: ', caplog)
assert log_has('Unable to sell trade ETH/BTC: ', caplog)
def test_update_trade_state(mocker, default_conf, limit_buy_order, caplog) -> None:
@ -1726,6 +1728,7 @@ def test_update_trade_state_withorderdict(default_conf, trades_for_order, limit_
amount=amount,
exchange='binance',
open_rate=0.245441,
open_date=arrow.utcnow().datetime,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_order_id="123456",
@ -1816,6 +1819,7 @@ def test_update_trade_state_sell(default_conf, trades_for_order, limit_sell_orde
open_rate=0.245441,
fee_open=0.0025,
fee_close=0.0025,
open_date=arrow.utcnow().datetime,
open_order_id="123456",
is_open=True,
)
@ -2023,11 +2027,16 @@ def test_check_handle_timedout_buy_usercustom(default_conf, ticker, limit_buy_or
rpc_mock = patch_RPCManager(mocker)
cancel_order_mock = MagicMock(return_value=limit_buy_order_old)
cancel_buy_order = deepcopy(limit_buy_order_old)
cancel_buy_order['status'] = 'canceled'
cancel_order_wr_mock = MagicMock(return_value=cancel_buy_order)
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
fetch_order=MagicMock(return_value=limit_buy_order_old),
cancel_order_with_result=cancel_order_wr_mock,
cancel_order=cancel_order_mock,
get_fee=fee
)
@ -2060,7 +2069,7 @@ def test_check_handle_timedout_buy_usercustom(default_conf, ticker, limit_buy_or
freqtrade.strategy.check_buy_timeout = MagicMock(return_value=True)
# Trade should be closed since the function returns true
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 1
assert cancel_order_wr_mock.call_count == 1
assert rpc_mock.call_count == 1
trades = Trade.query.filter(Trade.open_order_id.is_(open_trade.open_order_id)).all()
nb_trades = len(trades)
@ -2071,7 +2080,9 @@ def test_check_handle_timedout_buy_usercustom(default_conf, ticker, limit_buy_or
def test_check_handle_timedout_buy(default_conf, ticker, limit_buy_order_old, open_trade,
fee, mocker) -> None:
rpc_mock = patch_RPCManager(mocker)
cancel_order_mock = MagicMock(return_value=limit_buy_order_old)
limit_buy_cancel = deepcopy(limit_buy_order_old)
limit_buy_cancel['status'] = 'canceled'
cancel_order_mock = MagicMock(return_value=limit_buy_cancel)
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
@ -2259,7 +2270,10 @@ def test_check_handle_cancelled_sell(default_conf, ticker, limit_sell_order_old,
def test_check_handle_timedout_partial(default_conf, ticker, limit_buy_order_old_partial,
open_trade, mocker) -> None:
rpc_mock = patch_RPCManager(mocker)
cancel_order_mock = MagicMock(return_value=limit_buy_order_old_partial)
limit_buy_canceled = deepcopy(limit_buy_order_old_partial)
limit_buy_canceled['status'] = 'canceled'
cancel_order_mock = MagicMock(return_value=limit_buy_canceled)
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
@ -2392,7 +2406,11 @@ def test_check_handle_timedout_exception(default_conf, ticker, open_trade, mocke
def test_handle_cancel_buy(mocker, caplog, default_conf, limit_buy_order) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
cancel_order_mock = MagicMock(return_value=limit_buy_order)
cancel_buy_order = deepcopy(limit_buy_order)
cancel_buy_order['status'] = 'canceled'
del cancel_buy_order['filled']
cancel_order_mock = MagicMock(return_value=cancel_buy_order)
mocker.patch('freqtrade.exchange.Exchange.cancel_order_with_result', cancel_order_mock)
freqtrade = FreqtradeBot(default_conf)
@ -2412,9 +2430,12 @@ def test_handle_cancel_buy(mocker, caplog, default_conf, limit_buy_order) -> Non
assert not freqtrade.handle_cancel_buy(trade, limit_buy_order, reason)
assert cancel_order_mock.call_count == 1
limit_buy_order['filled'] = 2
mocker.patch('freqtrade.exchange.Exchange.cancel_order', side_effect=InvalidOrderException)
# Order remained open for some reason (cancel failed)
cancel_buy_order['status'] = 'open'
cancel_order_mock = MagicMock(return_value=cancel_buy_order)
mocker.patch('freqtrade.exchange.Exchange.cancel_order_with_result', cancel_order_mock)
assert not freqtrade.handle_cancel_buy(trade, limit_buy_order, reason)
assert log_has_re(r"Order .* for .* not cancelled.", caplog)
@pytest.mark.parametrize("limit_buy_order_canceled_empty", ['binance', 'ftx', 'kraken', 'bittrex'],
@ -2578,7 +2599,7 @@ def test_execute_sell_up(default_conf, ticker, fee, ticker_sell_up, mocker) -> N
'pair': 'ETH/BTC',
'gain': 'profit',
'limit': 1.172e-05,
'amount': 91.07468123861567,
'amount': 91.07468123,
'order_type': 'limit',
'open_rate': 1.098e-05,
'current_rate': 1.173e-05,
@ -2628,7 +2649,7 @@ def test_execute_sell_down(default_conf, ticker, fee, ticker_sell_down, mocker)
'pair': 'ETH/BTC',
'gain': 'loss',
'limit': 1.044e-05,
'amount': 91.07468123861567,
'amount': 91.07468123,
'order_type': 'limit',
'open_rate': 1.098e-05,
'current_rate': 1.043e-05,
@ -2685,7 +2706,7 @@ def test_execute_sell_down_stoploss_on_exchange_dry_run(default_conf, ticker, fe
'pair': 'ETH/BTC',
'gain': 'loss',
'limit': 1.08801e-05,
'amount': 91.07468123861567,
'amount': 91.07468123,
'order_type': 'limit',
'open_rate': 1.098e-05,
'current_rate': 1.043e-05,
@ -2891,7 +2912,7 @@ def test_execute_sell_market_order(default_conf, ticker, fee,
'pair': 'ETH/BTC',
'gain': 'profit',
'limit': 1.172e-05,
'amount': 91.07468123861567,
'amount': 91.07468123,
'order_type': 'market',
'open_rate': 1.098e-05,
'current_rate': 1.173e-05,
@ -3949,6 +3970,8 @@ def test_order_book_ask_strategy(default_conf, limit_buy_order, limit_sell_order
('ask', 0.006, 1.0, 0.006),
])
def test_get_sell_rate(default_conf, mocker, caplog, side, bid, ask, expected) -> None:
caplog.set_level(logging.DEBUG)
default_conf['ask_strategy']['price_side'] = side
mocker.patch('freqtrade.exchange.Exchange.fetch_ticker', return_value={'ask': ask, 'bid': bid})
pair = "ETH/BTC"
@ -3970,6 +3993,7 @@ def test_get_sell_rate(default_conf, mocker, caplog, side, bid, ask, expected) -
('ask', 0.043949), # Value from order_book_l2 fiture - asks side
])
def test_get_sell_rate_orderbook(default_conf, mocker, caplog, side, expected, order_book_l2):
caplog.set_level(logging.DEBUG)
# Test orderbook mode
default_conf['ask_strategy']['price_side'] = side
default_conf['ask_strategy']['use_order_book'] = True
@ -4087,7 +4111,7 @@ def test_sync_wallet_dry_run(mocker, default_conf, ticker, fee, limit_buy_order,
def test_cancel_all_open_orders(mocker, default_conf, fee, limit_buy_order, limit_sell_order):
default_conf['cancel_open_orders_on_exit'] = True
mocker.patch('freqtrade.exchange.Exchange.fetch_order',
side_effect=[DependencyException(), limit_sell_order, limit_buy_order])
side_effect=[ExchangeError(), limit_sell_order, limit_buy_order])
buy_mock = mocker.patch('freqtrade.freqtradebot.FreqtradeBot.handle_cancel_buy')
sell_mock = mocker.patch('freqtrade.freqtradebot.FreqtradeBot.handle_cancel_sell')

18
tests/test_indicators.py Normal file
View File

@ -0,0 +1,18 @@
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy as np
import pandas as pd
def test_crossed_numpy_types():
"""
This test is only present since this method currently diverges from the qtpylib implementation.
And we must ensure to not break this again once we update from the original source.
"""
series = pd.Series([56, 97, 19, 76, 65, 25, 87, 91, 79, 79])
expected_result = pd.Series([False, True, False, True, False, False, True, False, False, False])
assert qtpylib.crossed_above(series, 60).equals(expected_result)
assert qtpylib.crossed_above(series, 60.0).equals(expected_result)
assert qtpylib.crossed_above(series, np.int32(60)).equals(expected_result)
assert qtpylib.crossed_above(series, np.int64(60)).equals(expected_result)
assert qtpylib.crossed_above(series, np.float64(60.0)).equals(expected_result)

View File

@ -44,19 +44,19 @@ def test_parse_args_backtesting(mocker) -> None:
def test_main_start_hyperopt(mocker) -> None:
mocker.patch.object(Path, "is_file", MagicMock(side_effect=[False, True]))
mocker.patch.object(Path, 'is_file', MagicMock(side_effect=[False, True]))
hyperopt_mock = mocker.patch('freqtrade.commands.start_hyperopt', MagicMock())
hyperopt_mock.__name__ = PropertyMock("start_hyperopt")
hyperopt_mock.__name__ = PropertyMock('start_hyperopt')
# it's sys.exit(0) at the end of hyperopt
with pytest.raises(SystemExit):
main(['hyperopt'])
assert hyperopt_mock.call_count == 1
call_args = hyperopt_mock.call_args[0][0]
assert call_args["config"] == ['config.json']
assert call_args["verbosity"] == 0
assert call_args["command"] == 'hyperopt'
assert call_args["func"] is not None
assert callable(call_args["func"])
assert call_args['config'] == ['config.json']
assert call_args['verbosity'] == 0
assert call_args['command'] == 'hyperopt'
assert call_args['func'] is not None
assert callable(call_args['func'])
def test_main_fatal_exception(mocker, default_conf, caplog) -> None:

View File

@ -11,7 +11,7 @@ from freqtrade.misc import (datesarray_to_datetimearray, file_dump_json,
file_load_json, format_ms_time, pair_to_filename,
plural, render_template,
render_template_with_fallback, safe_value_fallback,
shorten_date)
safe_value_fallback2, shorten_date)
def test_shorten_date() -> None:
@ -96,24 +96,40 @@ def test_format_ms_time() -> None:
def test_safe_value_fallback():
dict1 = {'keya': None, 'keyb': 2, 'keyc': 5, 'keyd': None}
assert safe_value_fallback(dict1, 'keya', 'keyb') == 2
assert safe_value_fallback(dict1, 'keyb', 'keya') == 2
assert safe_value_fallback(dict1, 'keyb', 'keyc') == 2
assert safe_value_fallback(dict1, 'keya', 'keyc') == 5
assert safe_value_fallback(dict1, 'keyc', 'keyb') == 5
assert safe_value_fallback(dict1, 'keya', 'keyd') is None
assert safe_value_fallback(dict1, 'keyNo', 'keyNo') is None
assert safe_value_fallback(dict1, 'keyNo', 'keyNo', 55) == 55
def test_safe_value_fallback2():
dict1 = {'keya': None, 'keyb': 2, 'keyc': 5, 'keyd': None}
dict2 = {'keya': 20, 'keyb': None, 'keyc': 6, 'keyd': None}
assert safe_value_fallback(dict1, dict2, 'keya', 'keya') == 20
assert safe_value_fallback(dict2, dict1, 'keya', 'keya') == 20
assert safe_value_fallback2(dict1, dict2, 'keya', 'keya') == 20
assert safe_value_fallback2(dict2, dict1, 'keya', 'keya') == 20
assert safe_value_fallback(dict1, dict2, 'keyb', 'keyb') == 2
assert safe_value_fallback(dict2, dict1, 'keyb', 'keyb') == 2
assert safe_value_fallback2(dict1, dict2, 'keyb', 'keyb') == 2
assert safe_value_fallback2(dict2, dict1, 'keyb', 'keyb') == 2
assert safe_value_fallback(dict1, dict2, 'keyc', 'keyc') == 5
assert safe_value_fallback(dict2, dict1, 'keyc', 'keyc') == 6
assert safe_value_fallback2(dict1, dict2, 'keyc', 'keyc') == 5
assert safe_value_fallback2(dict2, dict1, 'keyc', 'keyc') == 6
assert safe_value_fallback(dict1, dict2, 'keyd', 'keyd') is None
assert safe_value_fallback(dict2, dict1, 'keyd', 'keyd') is None
assert safe_value_fallback(dict2, dict1, 'keyd', 'keyd', 1234) == 1234
assert safe_value_fallback2(dict1, dict2, 'keyd', 'keyd') is None
assert safe_value_fallback2(dict2, dict1, 'keyd', 'keyd') is None
assert safe_value_fallback2(dict2, dict1, 'keyd', 'keyd', 1234) == 1234
assert safe_value_fallback(dict1, dict2, 'keyNo', 'keyNo') is None
assert safe_value_fallback(dict2, dict1, 'keyNo', 'keyNo') is None
assert safe_value_fallback(dict2, dict1, 'keyNo', 'keyNo', 1234) == 1234
assert safe_value_fallback2(dict1, dict2, 'keyNo', 'keyNo') is None
assert safe_value_fallback2(dict2, dict1, 'keyNo', 'keyNo') is None
assert safe_value_fallback2(dict2, dict1, 'keyNo', 'keyNo', 1234) == 1234
def test_plural() -> None:

View File

@ -457,6 +457,7 @@ def test_migrate_old(mocker, default_conf, fee):
assert trade.close_rate_requested is None
assert trade.is_open == 1
assert trade.amount == amount
assert trade.amount_requested == amount
assert trade.stake_amount == default_conf.get("stake_amount")
assert trade.pair == "ETC/BTC"
assert trade.exchange == "bittrex"
@ -546,6 +547,7 @@ def test_migrate_new(mocker, default_conf, fee, caplog):
assert trade.close_rate_requested is None
assert trade.is_open == 1
assert trade.amount == amount
assert trade.amount_requested == amount
assert trade.stake_amount == default_conf.get("stake_amount")
assert trade.pair == "ETC/BTC"
assert trade.exchange == "binance"
@ -725,6 +727,7 @@ def test_to_json(default_conf, fee):
pair='ETH/BTC',
stake_amount=0.001,
amount=123.0,
amount_requested=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_date=arrow.utcnow().shift(hours=-2).datetime,
@ -757,6 +760,7 @@ def test_to_json(default_conf, fee):
'close_rate': None,
'close_rate_requested': None,
'amount': 123.0,
'amount_requested': 123.0,
'stake_amount': 0.001,
'close_profit': None,
'close_profit_abs': None,
@ -786,6 +790,7 @@ def test_to_json(default_conf, fee):
pair='XRP/BTC',
stake_amount=0.001,
amount=100.0,
amount_requested=101.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_date=arrow.utcnow().shift(hours=-2).datetime,
@ -808,6 +813,7 @@ def test_to_json(default_conf, fee):
'open_rate': 0.123,
'close_rate': 0.125,
'amount': 100.0,
'amount_requested': 101.0,
'stake_amount': 0.001,
'stop_loss': None,
'stop_loss_abs': None,

View File

@ -267,7 +267,7 @@ def test_generate_profit_graph(testdatadir):
trades = load_backtest_data(filename)
timerange = TimeRange.parse_timerange("20180110-20180112")
pairs = ["TRX/BTC", "XLM/BTC"]
trades = trades[trades['close_time'] < pd.Timestamp('2018-01-12', tz='UTC')]
trades = trades[trades['close_date'] < pd.Timestamp('2018-01-12', tz='UTC')]
data = history.load_data(datadir=testdatadir,
pairs=pairs,
@ -362,22 +362,22 @@ def test_start_plot_profit(mocker):
def test_start_plot_profit_error(mocker):
args = [
"plot-profit",
"--pairs", "ETH/BTC"
'plot-profit',
'--pairs', 'ETH/BTC'
]
argsp = get_args(args)
# Make sure we use no config. Details: #2241
# not resetting config causes random failures if config.json exists
argsp["config"] = []
argsp['config'] = []
with pytest.raises(OperationalException):
start_plot_profit(argsp)
def test_plot_profit(default_conf, mocker, testdatadir, caplog):
default_conf['trade_source'] = 'file'
default_conf["datadir"] = testdatadir
default_conf['exportfilename'] = testdatadir / "backtest-result_test_nofile.json"
default_conf['pairs'] = ["ETH/BTC", "LTC/BTC"]
default_conf['datadir'] = testdatadir
default_conf['exportfilename'] = testdatadir / 'backtest-result_test_nofile.json'
default_conf['pairs'] = ['ETH/BTC', 'LTC/BTC']
profit_mock = MagicMock()
store_mock = MagicMock()

View File

@ -1,5 +1,3 @@
import talib.abstract as ta
import pandas as pd

1
tests/testdata/.last_result.json vendored Normal file
View File

@ -0,0 +1 @@
{"latest_backtest":"backtest-result_new.json"}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long