Merge a944e30822
into b4be3c2499
This commit is contained in:
commit
cb2f062e87
0
bin/freqtrade
Executable file → Normal file
0
bin/freqtrade
Executable file → Normal file
@ -7,6 +7,7 @@ from enum import Enum
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import arrow
|
||||
import pandas as pd
|
||||
from pandas import DataFrame, to_datetime
|
||||
|
||||
from freqtrade import constants
|
||||
@ -269,3 +270,28 @@ class Analyze(object):
|
||||
"""
|
||||
return {pair: self.populate_indicators(self.parse_ticker_dataframe(pair_data))
|
||||
for pair, pair_data in tickerdata.items()}
|
||||
|
||||
def order_book_to_dataframe(self, data: list) -> DataFrame:
|
||||
"""
|
||||
Gets order book list, returns dataframe with below format per suggested by creslin
|
||||
-------------------------------------------------------------------
|
||||
b_sum b_size bids asks a_size a_sum
|
||||
-------------------------------------------------------------------
|
||||
uses:
|
||||
order_book = exchange.get_order_book(pair, 1000)
|
||||
order_book_df = self.analyze.order_book_to_dataframe(order_book)
|
||||
"""
|
||||
cols = ['bids', 'b_size']
|
||||
bids_frame = DataFrame(data['bids'], columns=cols)
|
||||
# add cumulative sum column for bids
|
||||
bids_frame['b_sum'] = bids_frame['b_size'].cumsum()
|
||||
cols2 = ['asks', 'a_size']
|
||||
asks_frame = DataFrame(data['asks'], columns=cols2)
|
||||
# add cumulative sum column for asks
|
||||
asks_frame['a_sum'] = asks_frame['a_size'].cumsum()
|
||||
# There might be a better way to do this... a refactor would be welcome :)
|
||||
frame = pd.concat([bids_frame['b_sum'], bids_frame['b_size'], bids_frame['bids'], \
|
||||
asks_frame['asks'], asks_frame['a_size'], asks_frame['a_sum']], axis=1, \
|
||||
keys=['b_sum', 'b_size', 'bids', 'asks', 'a_size', 'a_sum'])
|
||||
|
||||
return frame
|
||||
|
@ -237,6 +237,29 @@ class Exchange(object):
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e)
|
||||
|
||||
@retrier
|
||||
def get_order_book(self, pair: str, limit: Optional[int] = 100) -> dict:
|
||||
try:
|
||||
# 20180619: bittrex doesnt support limits -.-
|
||||
# 20180619: binance support limits but only on specific range
|
||||
if self.name == 'Binance':
|
||||
limit_range = [5, 10, 20, 50, 100, 500, 1000]
|
||||
for limitx in limit_range:
|
||||
if limit < limitx:
|
||||
limit = limitx
|
||||
break
|
||||
|
||||
return self._api.fetch_l2_order_book(pair, limit)
|
||||
except ccxt.NotSupported as e:
|
||||
raise OperationalException(
|
||||
f'Exchange {self.name} does not support fetching order book.'
|
||||
f'Message: {e}')
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not load order book due to {e.__class__.__name__}. Message: {e}')
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e)
|
||||
|
||||
@retrier
|
||||
def get_tickers(self) -> Dict:
|
||||
try:
|
||||
|
0
freqtrade/main.py
Executable file → Normal file
0
freqtrade/main.py
Executable file → Normal file
1
freqtrade/tests/testdata/ADA_BTC-1m.json
vendored
1
freqtrade/tests/testdata/ADA_BTC-1m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/ADA_BTC-5m.json
vendored
1
freqtrade/tests/testdata/ADA_BTC-5m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/DASH_BTC-1m.json
vendored
1
freqtrade/tests/testdata/DASH_BTC-1m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/DASH_BTC-5m.json
vendored
1
freqtrade/tests/testdata/DASH_BTC-5m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/ETC_BTC-1m.json
vendored
1
freqtrade/tests/testdata/ETC_BTC-1m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/ETC_BTC-5m.json
vendored
1
freqtrade/tests/testdata/ETC_BTC-5m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/ETH_BTC-1m.json
vendored
1
freqtrade/tests/testdata/ETH_BTC-1m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/ETH_BTC-5m.json
vendored
1
freqtrade/tests/testdata/ETH_BTC-5m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/LTC_BTC-1m.json
vendored
1
freqtrade/tests/testdata/LTC_BTC-1m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/LTC_BTC-5m.json
vendored
1
freqtrade/tests/testdata/LTC_BTC-5m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/NXT_BTC-1m.json
vendored
1
freqtrade/tests/testdata/NXT_BTC-1m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/NXT_BTC-5m.json
vendored
1
freqtrade/tests/testdata/NXT_BTC-5m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/POWR_BTC-1m.json
vendored
1
freqtrade/tests/testdata/POWR_BTC-1m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/POWR_BTC-5m.json
vendored
1
freqtrade/tests/testdata/POWR_BTC-5m.json
vendored
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/XLM_BTC-1m.json
vendored
1
freqtrade/tests/testdata/XLM_BTC-1m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/XLM_BTC-5m.json
vendored
1
freqtrade/tests/testdata/XLM_BTC-5m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/XMR_BTC-1m.json
vendored
1
freqtrade/tests/testdata/XMR_BTC-1m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/XMR_BTC-5m.json
vendored
1
freqtrade/tests/testdata/XMR_BTC-5m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/ZEC_BTC-1m.json
vendored
1
freqtrade/tests/testdata/ZEC_BTC-1m.json
vendored
File diff suppressed because one or more lines are too long
1
freqtrade/tests/testdata/ZEC_BTC-5m.json
vendored
1
freqtrade/tests/testdata/ZEC_BTC-5m.json
vendored
File diff suppressed because one or more lines are too long
26
freqtrade/tests/testdata/pairs.json
vendored
26
freqtrade/tests/testdata/pairs.json
vendored
@ -1,26 +0,0 @@
|
||||
[
|
||||
"ADA/BTC",
|
||||
"BAT/BTC",
|
||||
"DASH/BTC",
|
||||
"ETC/BTC",
|
||||
"ETH/BTC",
|
||||
"GBYTE/BTC",
|
||||
"LSK/BTC",
|
||||
"LTC/BTC",
|
||||
"NEO/BTC",
|
||||
"NXT/BTC",
|
||||
"POWR/BTC",
|
||||
"STORJ/BTC",
|
||||
"QTUM/BTC",
|
||||
"WAVES/BTC",
|
||||
"VTC/BTC",
|
||||
"XLM/BTC",
|
||||
"XMR/BTC",
|
||||
"XVG/BTC",
|
||||
"XRP/BTC",
|
||||
"ZEC/BTC",
|
||||
"BTC/USDT",
|
||||
"LTC/USDT",
|
||||
"ETH/USDT"
|
||||
]
|
||||
|
0
scripts/convert_backtestdata.py
Executable file → Normal file
0
scripts/convert_backtestdata.py
Executable file → Normal file
0
scripts/download_backtest_data.py
Executable file → Normal file
0
scripts/download_backtest_data.py
Executable file → Normal file
0
scripts/plot_dataframe.py
Executable file → Normal file
0
scripts/plot_dataframe.py
Executable file → Normal file
0
scripts/plot_profit.py
Executable file → Normal file
0
scripts/plot_profit.py
Executable file → Normal file
@ -1,242 +0,0 @@
|
||||
|
||||
# --- Do not remove these libs ---
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from pandas import DataFrame
|
||||
# --------------------------------
|
||||
|
||||
# Add your lib to import here
|
||||
import talib.abstract as ta
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
import numpy # noqa
|
||||
|
||||
|
||||
# This class is a sample. Feel free to customize it.
|
||||
class TestStrategy(IStrategy):
|
||||
"""
|
||||
This is a test strategy to inspire you.
|
||||
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md
|
||||
|
||||
You can:
|
||||
- Rename the class name (Do not forget to update class_name)
|
||||
- Add any methods you want to build your strategy
|
||||
- Add any lib you need to build your strategy
|
||||
|
||||
You must keep:
|
||||
- the lib in the section "Do not remove these libs"
|
||||
- the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend,
|
||||
populate_sell_trend, hyperopt_space, buy_strategy_generator
|
||||
"""
|
||||
|
||||
# Minimal ROI designed for the strategy.
|
||||
# This attribute will be overridden if the config file contains "minimal_roi"
|
||||
minimal_roi = {
|
||||
"40": 0.0,
|
||||
"30": 0.01,
|
||||
"20": 0.02,
|
||||
"0": 0.04
|
||||
}
|
||||
|
||||
# Optimal stoploss designed for the strategy
|
||||
# This attribute will be overridden if the config file contains "stoploss"
|
||||
stoploss = -0.10
|
||||
|
||||
# Optimal ticker interval for the strategy
|
||||
ticker_interval = '5m'
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
"""
|
||||
|
||||
# Momentum Indicator
|
||||
# ------------------------------------
|
||||
|
||||
# ADX
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
|
||||
"""
|
||||
# Awesome oscillator
|
||||
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
||||
|
||||
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
|
||||
dataframe['cci'] = ta.CCI(dataframe)
|
||||
|
||||
# MACD
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['macdhist'] = macd['macdhist']
|
||||
|
||||
# MFI
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
|
||||
# Minus Directional Indicator / Movement
|
||||
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
|
||||
# Plus Directional Indicator / Movement
|
||||
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
|
||||
# ROC
|
||||
dataframe['roc'] = ta.ROC(dataframe)
|
||||
|
||||
# RSI
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
|
||||
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||
rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
||||
|
||||
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||||
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||||
|
||||
# Stoch
|
||||
stoch = ta.STOCH(dataframe)
|
||||
dataframe['slowd'] = stoch['slowd']
|
||||
dataframe['slowk'] = stoch['slowk']
|
||||
|
||||
# Stoch fast
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['fastk'] = stoch_fast['fastk']
|
||||
|
||||
# Stoch RSI
|
||||
stoch_rsi = ta.STOCHRSI(dataframe)
|
||||
dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
||||
dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
||||
"""
|
||||
|
||||
# Overlap Studies
|
||||
# ------------------------------------
|
||||
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['bb_middleband'] = bollinger['mid']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
|
||||
"""
|
||||
# EMA - Exponential Moving Average
|
||||
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
||||
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
||||
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
||||
|
||||
# SAR Parabol
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
# SMA - Simple Moving Average
|
||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||||
"""
|
||||
|
||||
# TEMA - Triple Exponential Moving Average
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||
|
||||
# Cycle Indicator
|
||||
# ------------------------------------
|
||||
# Hilbert Transform Indicator - SineWave
|
||||
hilbert = ta.HT_SINE(dataframe)
|
||||
dataframe['htsine'] = hilbert['sine']
|
||||
dataframe['htleadsine'] = hilbert['leadsine']
|
||||
|
||||
# Pattern Recognition - Bullish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Hammer: values [0, 100]
|
||||
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
||||
# Inverted Hammer: values [0, 100]
|
||||
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
|
||||
# Dragonfly Doji: values [0, 100]
|
||||
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
|
||||
# Piercing Line: values [0, 100]
|
||||
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
|
||||
# Morningstar: values [0, 100]
|
||||
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
|
||||
# Three White Soldiers: values [0, 100]
|
||||
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
|
||||
"""
|
||||
|
||||
# Pattern Recognition - Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Hanging Man: values [0, 100]
|
||||
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
|
||||
# Shooting Star: values [0, 100]
|
||||
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
|
||||
# Gravestone Doji: values [0, 100]
|
||||
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
|
||||
# Dark Cloud Cover: values [0, 100]
|
||||
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
|
||||
# Evening Doji Star: values [0, 100]
|
||||
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
|
||||
# Evening Star: values [0, 100]
|
||||
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
|
||||
"""
|
||||
|
||||
# Pattern Recognition - Bullish/Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Three Line Strike: values [0, -100, 100]
|
||||
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
|
||||
# Spinning Top: values [0, -100, 100]
|
||||
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
|
||||
# Engulfing: values [0, -100, 100]
|
||||
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
|
||||
# Harami: values [0, -100, 100]
|
||||
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
|
||||
# Three Outside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
|
||||
# Three Inside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
|
||||
"""
|
||||
|
||||
# Chart type
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Heikinashi stategy
|
||||
heikinashi = qtpylib.heikinashi(dataframe)
|
||||
dataframe['ha_open'] = heikinashi['open']
|
||||
dataframe['ha_close'] = heikinashi['close']
|
||||
dataframe['ha_high'] = heikinashi['high']
|
||||
dataframe['ha_low'] = heikinashi['low']
|
||||
"""
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 30) &
|
||||
(dataframe['tema'] <= dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] > dataframe['tema'].shift(1))
|
||||
),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 70) &
|
||||
(dataframe['tema'] > dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] < dataframe['tema'].shift(1))
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
Loading…
Reference in New Issue
Block a user