finalize logo, improve doc, improve algo overview, fix base tensorflowmodel for mypy
This commit is contained in:
parent
58de20af0f
commit
c9c128f781
Binary file not shown.
Before Width: | Height: | Size: 328 KiB After Width: | Height: | Size: 995 KiB |
File diff suppressed because one or more lines are too long
Before Width: | Height: | Size: 44 KiB After Width: | Height: | Size: 2.0 MiB |
@ -6,16 +6,16 @@ FreqAI is a module designed to automate a variety of tasks associated with train
|
||||
|
||||
Among the the features included:
|
||||
|
||||
* **Self-adaptive retraining**: automatically retrain models during live deployments to self-adapt to the market in an unsupervised manner.
|
||||
* **Self-adaptive retraining**: retrain models during live deployments to self-adapt to the market in an unsupervised manner.
|
||||
* **Rapid feature engineering**: create large rich feature sets (10k+ features) based on simple user created strategies.
|
||||
* **High performance**: adaptive retraining occurs on separate thread (or on GPU if available) from inferencing and bot trade operations. Keep newest models and data in memory for rapid inferencing.
|
||||
* **Realistic backtesting**: emulate self-adaptive retraining with backtesting module that automates past retraining.
|
||||
* **Modifiable**: use the generalized and robust architecture for incorporating any machine learning library/method available in Python. Seven examples available.
|
||||
* **Smart outlier removal**: remove outliers automatically from training and prediction sets using a variety of outlier detection techniques.
|
||||
* **Crash resilience**: automatic model storage to disk to make reloading from a crash fast and easy (and purge obsolete files automatically for sustained dry/live runs).
|
||||
* **Automated data normalization**: automatically normalize the data automatically in a smart and statistically safe way.
|
||||
* **Automatic data download**: automatically compute the data download timerange and downloads data accordingly (in live deployments).
|
||||
* **Clean the incoming data of NaNs in a safe way before training and prediction.
|
||||
* **Smart outlier removal**: remove outliers from training and prediction sets using a variety of outlier detection techniques.
|
||||
* **Crash resilience**: model storage to disk to make reloading from a crash fast and easy (and purge obsolete files for sustained dry/live runs).
|
||||
* **Automated data normalization**: normalize the data in a smart and statistically safe way.
|
||||
* **Automatic data download**: compute the data download timerange and update historic data (in live deployments).
|
||||
* **Clean incoming data** safe NaN handling before training and prediction.
|
||||
* **Dimensionality reduction**: reduce the size of the training data via Principal Component Analysis.
|
||||
* **Deploy bot fleets**: set one bot to train models while a fleet of other bots inference into the models and handle trades.
|
||||
|
||||
@ -412,10 +412,75 @@ The FreqAI strategy requires the user to include the following lines of code in
|
||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_any_indicators(
|
||||
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
||||
):
|
||||
"""
|
||||
Function designed to automatically generate, name and merge features
|
||||
from user indicated timeframes in the configuration file. User controls the indicators
|
||||
passed to the training/prediction by prepending indicators with `'%-' + coin `
|
||||
(see convention below). I.e. user should not prepend any supporting metrics
|
||||
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
||||
model.
|
||||
:param pair: pair to be used as informative
|
||||
:param df: strategy dataframe which will receive merges from informatives
|
||||
:param tf: timeframe of the dataframe which will modify the feature names
|
||||
:param informative: the dataframe associated with the informative pair
|
||||
:param coin: the name of the coin which will modify the feature names.
|
||||
"""
|
||||
|
||||
coint = pair.split('/')[0]
|
||||
|
||||
with self.freqai.lock:
|
||||
if informative is None:
|
||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||
|
||||
# first loop is automatically duplicating indicators for time periods
|
||||
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
||||
t = int(t)
|
||||
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
||||
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
||||
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
|
||||
|
||||
indicators = [col for col in informative if col.startswith("%")]
|
||||
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
||||
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
||||
if n == 0:
|
||||
continue
|
||||
informative_shift = informative[indicators].shift(n)
|
||||
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
||||
informative = pd.concat((informative, informative_shift), axis=1)
|
||||
|
||||
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
||||
skip_columns = [
|
||||
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
||||
]
|
||||
df = df.drop(columns=skip_columns)
|
||||
|
||||
# Add generalized indicators here (because in live, it will call this
|
||||
# function to populate indicators during training). Notice how we ensure not to
|
||||
# add them multiple times
|
||||
if set_generalized_indicators:
|
||||
|
||||
# user adds targets here by prepending them with &- (see convention below)
|
||||
# If user wishes to use multiple targets, a multioutput prediction model
|
||||
# needs to be used such as templates/CatboostPredictionMultiModel.py
|
||||
df["&-s_close"] = (
|
||||
df["close"]
|
||||
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
.mean()
|
||||
/ df["close"]
|
||||
- 1
|
||||
)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
```
|
||||
|
||||
The user should also include `populate_any_indicators()` from `templates/FreqaiExampleStrategy.py` which builds
|
||||
the feature set with a proper naming convention for the IFreqaiModel to use later.
|
||||
Notice how the `populate_any_indicators()` is where the user adds their own features and labels (more information [here](#feature-engineering)). See a full example at `templates/FreqaiExampleStrategy.py`.
|
||||
|
||||
### Setting classifier targets
|
||||
|
||||
|
@ -24,7 +24,7 @@ class BaseTensorFlowModel(IFreqaiModel):
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_dataframe: Full dataframe for the current training period
|
||||
:param metadata: pair metadata from strategy.
|
||||
:returns:
|
||||
:return:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
@ -38,9 +38,14 @@ class BaseTensorFlowModel(IFreqaiModel):
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
start_date = unfiltered_dataframe["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_dataframe["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date}--------------------")
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
|
||||
if not self.freqai_info.get('fit_live_predictions', 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
|
||||
@ -54,17 +59,6 @@ class BaseTensorFlowModel(IFreqaiModel):
|
||||
|
||||
model = self.fit(data_dictionary)
|
||||
|
||||
if pair not in self.dd.historic_predictions:
|
||||
self.set_initial_historic_predictions(
|
||||
data_dictionary['train_features'], model, dk, pair)
|
||||
|
||||
if self.freqai_info.get('fit_live_predictions_candles', 0) and self.live:
|
||||
self.fit_live_predictions(dk)
|
||||
else:
|
||||
dk.fit_labels()
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
||||
return model
|
||||
|
Loading…
Reference in New Issue
Block a user