Merge branch 'develop' into freqai_bt_from_predictions_improvement

This commit is contained in:
Wagner Costa 2022-12-05 18:00:55 -03:00
commit c81b00fb37
14 changed files with 54 additions and 30 deletions

View File

@ -410,7 +410,7 @@ jobs:
python setup.py sdist bdist_wheel python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test) - name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@v1.5.1 uses: pypa/gh-action-pypi-publish@v1.6.1
if: (github.event_name == 'release') if: (github.event_name == 'release')
with: with:
user: __token__ user: __token__
@ -418,7 +418,7 @@ jobs:
repository_url: https://test.pypi.org/legacy/ repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI - name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@v1.5.1 uses: pypa/gh-action-pypi-publish@v1.6.1
if: (github.event_name == 'release') if: (github.event_name == 'release')
with: with:
user: __token__ user: __token__

View File

@ -54,6 +54,9 @@ This configuration enables kraken, as well as rate-limiting to avoid bans from t
## Binance ## Binance
!!! Warning "Server location and geo-ip restrictions"
Please be aware that binance restrict api access regarding the server country. The currents and non exhaustive countries blocked are United States, Malaysia (Singapour), Ontario (Canada). Please go to [binance terms > b. Eligibility](https://www.binance.com/en/terms) to find up to date list.
Binance supports [time_in_force](configuration.md#understand-order_time_in_force). Binance supports [time_in_force](configuration.md#understand-order_time_in_force).
!!! Tip "Stoploss on Exchange" !!! Tip "Stoploss on Exchange"

View File

@ -37,7 +37,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `populate_any_indicators()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer. | `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `populate_any_indicators()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer.
| `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br> **Datatype:** List of positive integers. | `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br> **Datatype:** List of positive integers.
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean. <br> Default: `False`. | `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean. <br> Default: `False`.
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. <br> **Datatype:** Integer. <br> Default: `0`. | `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. Plot is stored in `user_data/models/<identifier>/sub-train-<COIN>_<timestamp>.html`. <br> **Datatype:** Integer. <br> Default: `0`.
| `DI_threshold` | Activates the use of the Dissimilarity Index for outlier detection when set to > 0. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Positive float (typically < 1). | `DI_threshold` | Activates the use of the Dissimilarity Index for outlier detection when set to > 0. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Positive float (typically < 1).
| `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training dataset, as well as from incoming data points. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean. | `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training dataset, as well as from incoming data points. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean.
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary. | `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary.

View File

@ -243,7 +243,7 @@ cd freqtrade
tensorboard --logdir user_data/models/unique-id tensorboard --logdir user_data/models/unique-id
``` ```
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell to view the output in their browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard). where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell to view the output in their browser at 127.0.0.1:6006 (6006 is the default port used by Tensorboard).
![tensorboard](assets/tensorboard.jpg) ![tensorboard](assets/tensorboard.jpg)

View File

@ -1,6 +1,6 @@
markdown==3.3.7 markdown==3.3.7
mkdocs==1.4.2 mkdocs==1.4.2
mkdocs-material==8.5.10 mkdocs-material==8.5.11
mdx_truly_sane_lists==1.3 mdx_truly_sane_lists==1.3
pymdown-extensions==9.8 pymdown-extensions==9.9
jinja2==3.1.2 jinja2==3.1.2

View File

@ -194,12 +194,12 @@ class BaseEnvironment(gym.Env):
if self._position == Positions.Neutral: if self._position == Positions.Neutral:
return 0. return 0.
elif self._position == Positions.Short: elif self._position == Positions.Short:
current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
return (last_trade_price - current_price) / last_trade_price
elif self._position == Positions.Long:
current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open) current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open) last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open)
return (last_trade_price - current_price) / last_trade_price
elif self._position == Positions.Long:
current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
return (current_price - last_trade_price) / last_trade_price return (current_price - last_trade_price) / last_trade_price
else: else:
return 0. return 0.

View File

@ -64,7 +64,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
self.policy_type = self.freqai_info['rl_config']['policy_type'] self.policy_type = self.freqai_info['rl_config']['policy_type']
self.unset_outlier_removal() self.unset_outlier_removal()
self.net_arch = self.rl_config.get('net_arch', [128, 128]) self.net_arch = self.rl_config.get('net_arch', [128, 128])
self.dd.model_type = "stable_baselines" self.dd.model_type = import_str
def unset_outlier_removal(self): def unset_outlier_removal(self):
""" """

View File

@ -503,7 +503,7 @@ class FreqaiDataDrawer:
dump(model, save_path / f"{dk.model_filename}_model.joblib") dump(model, save_path / f"{dk.model_filename}_model.joblib")
elif self.model_type == 'keras': elif self.model_type == 'keras':
model.save(save_path / f"{dk.model_filename}_model.h5") model.save(save_path / f"{dk.model_filename}_model.h5")
elif 'stable_baselines' in self.model_type: elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
model.save(save_path / f"{dk.model_filename}_model.zip") model.save(save_path / f"{dk.model_filename}_model.zip")
if dk.svm_model is not None: if dk.svm_model is not None:
@ -589,9 +589,9 @@ class FreqaiDataDrawer:
elif self.model_type == 'keras': elif self.model_type == 'keras':
from tensorflow import keras from tensorflow import keras
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5") model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
elif self.model_type == 'stable_baselines': elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
mod = importlib.import_module( mod = importlib.import_module(
'stable_baselines3', self.freqai_info['rl_config']['model_type']) self.model_type, self.freqai_info['rl_config']['model_type'])
MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type']) MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type'])
model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model") model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")

View File

@ -7,6 +7,8 @@ import logging
import sys import sys
from typing import Any, List from typing import Any, List
from freqtrade.util.gc_setup import gc_set_threshold
# check min. python version # check min. python version
if sys.version_info < (3, 8): # pragma: no cover if sys.version_info < (3, 8): # pragma: no cover
@ -36,6 +38,7 @@ def main(sysargv: List[str] = None) -> None:
# Call subcommand. # Call subcommand.
if 'func' in args: if 'func' in args:
logger.info(f'freqtrade {__version__}') logger.info(f'freqtrade {__version__}')
gc_set_threshold()
return_code = args['func'](args) return_code = args['func'](args)
else: else:
# No subcommand was issued. # No subcommand was issued.

View File

@ -0,0 +1,18 @@
import gc
import logging
import platform
logger = logging.getLogger(__name__)
def gc_set_threshold():
"""
Reduce number of GC runs to improve performance (explanation video)
https://www.youtube.com/watch?v=p4Sn6UcFTOU
"""
if platform.python_implementation() == "CPython":
# allocs, g1, g2 = gc.get_threshold()
gc.set_threshold(50_000, 500, 1000)
logger.debug("Adjusting python allocations to reduce GC runs")

View File

@ -15,7 +15,7 @@ pytest==7.2.0
pytest-asyncio==0.20.2 pytest-asyncio==0.20.2
pytest-cov==4.0.0 pytest-cov==4.0.0
pytest-mock==3.10.0 pytest-mock==3.10.0
pytest-random-order==1.0.4 pytest-random-order==1.1.0
isort==5.10.1 isort==5.10.1
# For datetime mocking # For datetime mocking
time-machine==2.8.2 time-machine==2.8.2

View File

@ -2,7 +2,7 @@
-r requirements-freqai.txt -r requirements-freqai.txt
# Required for freqai-rl # Required for freqai-rl
torch==1.12.1 torch==1.13.0
stable-baselines3==1.6.2 stable-baselines3==1.6.2
sb3-contrib==1.6.2 sb3-contrib==1.6.2
# Gym is forced to this version by stable-baselines3. # Gym is forced to this version by stable-baselines3.

View File

@ -1,8 +1,8 @@
numpy==1.23.5 numpy==1.23.5
pandas==1.5.1 pandas==1.5.2
pandas-ta==0.3.14b pandas-ta==0.3.14b
ccxt==2.2.36 ccxt==2.2.67
# Pin cryptography for now due to rust build errors with piwheels # Pin cryptography for now due to rust build errors with piwheels
cryptography==38.0.1; platform_machine == 'armv7l' cryptography==38.0.1; platform_machine == 'armv7l'
cryptography==38.0.4; platform_machine != 'armv7l' cryptography==38.0.4; platform_machine != 'armv7l'
@ -13,7 +13,7 @@ arrow==1.2.3
cachetools==4.2.2 cachetools==4.2.2
requests==2.28.1 requests==2.28.1
urllib3==1.26.13 urllib3==1.26.13
jsonschema==4.17.1 jsonschema==4.17.3
TA-Lib==0.4.25 TA-Lib==0.4.25
technical==1.3.0 technical==1.3.0
tabulate==0.9.0 tabulate==0.9.0
@ -30,13 +30,13 @@ py_find_1st==1.1.5
# Load ticker files 30% faster # Load ticker files 30% faster
python-rapidjson==1.9 python-rapidjson==1.9
# Properly format api responses # Properly format api responses
orjson==3.8.2 orjson==3.8.3
# Notify systemd # Notify systemd
sdnotify==0.3.2 sdnotify==0.3.2
# API Server # API Server
fastapi==0.87.0 fastapi==0.88.0
pydantic==1.10.2 pydantic==1.10.2
uvicorn==0.20.0 uvicorn==0.20.0
pyjwt==2.6.0 pyjwt==2.6.0

View File

@ -28,15 +28,15 @@ EXCHANGES = {
'leverage_tiers_public': False, 'leverage_tiers_public': False,
'leverage_in_spot_market': False, 'leverage_in_spot_market': False,
}, },
'binance': { # 'binance': {
'pair': 'BTC/USDT', # 'pair': 'BTC/USDT',
'stake_currency': 'USDT', # 'stake_currency': 'USDT',
'hasQuoteVolume': True, # 'hasQuoteVolume': True,
'timeframe': '5m', # 'timeframe': '5m',
'futures': True, # 'futures': True,
'leverage_tiers_public': False, # 'leverage_tiers_public': False,
'leverage_in_spot_market': False, # 'leverage_in_spot_market': False,
}, # },
'kraken': { 'kraken': {
'pair': 'BTC/USDT', 'pair': 'BTC/USDT',
'stake_currency': 'USDT', 'stake_currency': 'USDT',