chore: split BTAnalyais to metrics
This commit is contained in:
parent
2acb68e6e2
commit
c6c569b772
@ -5,7 +5,7 @@ import logging
|
|||||||
from copy import copy
|
from copy import copy
|
||||||
from datetime import datetime, timezone
|
from datetime import datetime, timezone
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
from typing import Any, Dict, List, Optional, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -400,168 +400,3 @@ def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
|
|||||||
trades = trades.loc[(trades['open_date'] >= trades_start) &
|
trades = trades.loc[(trades['open_date'] >= trades_start) &
|
||||||
(trades['close_date'] <= trades_stop)]
|
(trades['close_date'] <= trades_stop)]
|
||||||
return trades
|
return trades
|
||||||
|
|
||||||
|
|
||||||
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
|
|
||||||
"""
|
|
||||||
Calculate market change based on "column".
|
|
||||||
Calculation is done by taking the first non-null and the last non-null element of each column
|
|
||||||
and calculating the pctchange as "(last - first) / first".
|
|
||||||
Then the results per pair are combined as mean.
|
|
||||||
|
|
||||||
:param data: Dict of Dataframes, dict key should be pair.
|
|
||||||
:param column: Column in the original dataframes to use
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
tmp_means = []
|
|
||||||
for pair, df in data.items():
|
|
||||||
start = df[column].dropna().iloc[0]
|
|
||||||
end = df[column].dropna().iloc[-1]
|
|
||||||
tmp_means.append((end - start) / start)
|
|
||||||
|
|
||||||
return float(np.mean(tmp_means))
|
|
||||||
|
|
||||||
|
|
||||||
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
|
|
||||||
column: str = "close") -> pd.DataFrame:
|
|
||||||
"""
|
|
||||||
Combine multiple dataframes "column"
|
|
||||||
:param data: Dict of Dataframes, dict key should be pair.
|
|
||||||
:param column: Column in the original dataframes to use
|
|
||||||
:return: DataFrame with the column renamed to the dict key, and a column
|
|
||||||
named mean, containing the mean of all pairs.
|
|
||||||
:raise: ValueError if no data is provided.
|
|
||||||
"""
|
|
||||||
df_comb = pd.concat([data[pair].set_index('date').rename(
|
|
||||||
{column: pair}, axis=1)[pair] for pair in data], axis=1)
|
|
||||||
|
|
||||||
df_comb['mean'] = df_comb.mean(axis=1)
|
|
||||||
|
|
||||||
return df_comb
|
|
||||||
|
|
||||||
|
|
||||||
def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
|
||||||
timeframe: str) -> pd.DataFrame:
|
|
||||||
"""
|
|
||||||
Adds a column `col_name` with the cumulative profit for the given trades array.
|
|
||||||
:param df: DataFrame with date index
|
|
||||||
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
|
|
||||||
:param col_name: Column name that will be assigned the results
|
|
||||||
:param timeframe: Timeframe used during the operations
|
|
||||||
:return: Returns df with one additional column, col_name, containing the cumulative profit.
|
|
||||||
:raise: ValueError if trade-dataframe was found empty.
|
|
||||||
"""
|
|
||||||
if len(trades) == 0:
|
|
||||||
raise ValueError("Trade dataframe empty.")
|
|
||||||
from freqtrade.exchange import timeframe_to_minutes
|
|
||||||
timeframe_minutes = timeframe_to_minutes(timeframe)
|
|
||||||
# Resample to timeframe to make sure trades match candles
|
|
||||||
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_date'
|
|
||||||
)[['profit_abs']].sum()
|
|
||||||
df.loc[:, col_name] = _trades_sum['profit_abs'].cumsum()
|
|
||||||
# Set first value to 0
|
|
||||||
df.loc[df.iloc[0].name, col_name] = 0
|
|
||||||
# FFill to get continuous
|
|
||||||
df[col_name] = df[col_name].ffill()
|
|
||||||
return df
|
|
||||||
|
|
||||||
|
|
||||||
def _calc_drawdown_series(profit_results: pd.DataFrame, *, date_col: str, value_col: str
|
|
||||||
) -> pd.DataFrame:
|
|
||||||
max_drawdown_df = pd.DataFrame()
|
|
||||||
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
|
|
||||||
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
|
|
||||||
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
|
|
||||||
max_drawdown_df['date'] = profit_results.loc[:, date_col]
|
|
||||||
return max_drawdown_df
|
|
||||||
|
|
||||||
|
|
||||||
def calculate_underwater(trades: pd.DataFrame, *, date_col: str = 'close_date',
|
|
||||||
value_col: str = 'profit_ratio'
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Calculate max drawdown and the corresponding close dates
|
|
||||||
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
|
|
||||||
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
|
|
||||||
:param value_col: Column in DataFrame to use for values (defaults to 'profit_ratio')
|
|
||||||
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue) with absolute max drawdown,
|
|
||||||
high and low time and high and low value.
|
|
||||||
:raise: ValueError if trade-dataframe was found empty.
|
|
||||||
"""
|
|
||||||
if len(trades) == 0:
|
|
||||||
raise ValueError("Trade dataframe empty.")
|
|
||||||
profit_results = trades.sort_values(date_col).reset_index(drop=True)
|
|
||||||
max_drawdown_df = _calc_drawdown_series(profit_results, date_col=date_col, value_col=value_col)
|
|
||||||
|
|
||||||
return max_drawdown_df
|
|
||||||
|
|
||||||
|
|
||||||
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
|
|
||||||
value_col: str = 'profit_abs', starting_balance: float = 0
|
|
||||||
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
|
|
||||||
"""
|
|
||||||
Calculate max drawdown and the corresponding close dates
|
|
||||||
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
|
|
||||||
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
|
|
||||||
:param value_col: Column in DataFrame to use for values (defaults to 'profit_abs')
|
|
||||||
:param starting_balance: Portfolio starting balance - properly calculate relative drawdown.
|
|
||||||
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue, relative_drawdown)
|
|
||||||
with absolute max drawdown, high and low time and high and low value,
|
|
||||||
and the relative account drawdown
|
|
||||||
:raise: ValueError if trade-dataframe was found empty.
|
|
||||||
"""
|
|
||||||
if len(trades) == 0:
|
|
||||||
raise ValueError("Trade dataframe empty.")
|
|
||||||
profit_results = trades.sort_values(date_col).reset_index(drop=True)
|
|
||||||
max_drawdown_df = _calc_drawdown_series(profit_results, date_col=date_col, value_col=value_col)
|
|
||||||
|
|
||||||
idxmin = max_drawdown_df['drawdown'].idxmin()
|
|
||||||
if idxmin == 0:
|
|
||||||
raise ValueError("No losing trade, therefore no drawdown.")
|
|
||||||
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
|
|
||||||
low_date = profit_results.loc[idxmin, date_col]
|
|
||||||
high_val = max_drawdown_df.loc[max_drawdown_df.iloc[:idxmin]
|
|
||||||
['high_value'].idxmax(), 'cumulative']
|
|
||||||
low_val = max_drawdown_df.loc[idxmin, 'cumulative']
|
|
||||||
max_drawdown_rel = 0.0
|
|
||||||
if high_val + starting_balance != 0:
|
|
||||||
max_drawdown_rel = (high_val - low_val) / (high_val + starting_balance)
|
|
||||||
|
|
||||||
return (
|
|
||||||
abs(min(max_drawdown_df['drawdown'])),
|
|
||||||
high_date,
|
|
||||||
low_date,
|
|
||||||
high_val,
|
|
||||||
low_val,
|
|
||||||
max_drawdown_rel
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[float, float]:
|
|
||||||
"""
|
|
||||||
Calculate min/max cumsum of trades, to show if the wallet/stake amount ratio is sane
|
|
||||||
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
|
|
||||||
:param starting_balance: Add starting balance to results, to show the wallets high / low points
|
|
||||||
:return: Tuple (float, float) with cumsum of profit_abs
|
|
||||||
:raise: ValueError if trade-dataframe was found empty.
|
|
||||||
"""
|
|
||||||
if len(trades) == 0:
|
|
||||||
raise ValueError("Trade dataframe empty.")
|
|
||||||
|
|
||||||
csum_df = pd.DataFrame()
|
|
||||||
csum_df['sum'] = trades['profit_abs'].cumsum()
|
|
||||||
csum_min = csum_df['sum'].min() + starting_balance
|
|
||||||
csum_max = csum_df['sum'].max() + starting_balance
|
|
||||||
|
|
||||||
return csum_min, csum_max
|
|
||||||
|
|
||||||
|
|
||||||
def calculate_cagr(days_passed: int, starting_balance: float, final_balance: float) -> float:
|
|
||||||
"""
|
|
||||||
Calculate CAGR
|
|
||||||
:param days_passed: Days passed between start and ending balance
|
|
||||||
:param starting_balance: Starting balance
|
|
||||||
:param final_balance: Final balance to calculate CAGR against
|
|
||||||
:return: CAGR
|
|
||||||
"""
|
|
||||||
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1
|
|
||||||
|
173
freqtrade/data/metrics.py
Normal file
173
freqtrade/data/metrics.py
Normal file
@ -0,0 +1,173 @@
|
|||||||
|
import logging
|
||||||
|
from typing import Dict, Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
|
||||||
|
"""
|
||||||
|
Calculate market change based on "column".
|
||||||
|
Calculation is done by taking the first non-null and the last non-null element of each column
|
||||||
|
and calculating the pctchange as "(last - first) / first".
|
||||||
|
Then the results per pair are combined as mean.
|
||||||
|
|
||||||
|
:param data: Dict of Dataframes, dict key should be pair.
|
||||||
|
:param column: Column in the original dataframes to use
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
tmp_means = []
|
||||||
|
for pair, df in data.items():
|
||||||
|
start = df[column].dropna().iloc[0]
|
||||||
|
end = df[column].dropna().iloc[-1]
|
||||||
|
tmp_means.append((end - start) / start)
|
||||||
|
|
||||||
|
return float(np.mean(tmp_means))
|
||||||
|
|
||||||
|
|
||||||
|
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
|
||||||
|
column: str = "close") -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Combine multiple dataframes "column"
|
||||||
|
:param data: Dict of Dataframes, dict key should be pair.
|
||||||
|
:param column: Column in the original dataframes to use
|
||||||
|
:return: DataFrame with the column renamed to the dict key, and a column
|
||||||
|
named mean, containing the mean of all pairs.
|
||||||
|
:raise: ValueError if no data is provided.
|
||||||
|
"""
|
||||||
|
df_comb = pd.concat([data[pair].set_index('date').rename(
|
||||||
|
{column: pair}, axis=1)[pair] for pair in data], axis=1)
|
||||||
|
|
||||||
|
df_comb['mean'] = df_comb.mean(axis=1)
|
||||||
|
|
||||||
|
return df_comb
|
||||||
|
|
||||||
|
|
||||||
|
def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
||||||
|
timeframe: str) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Adds a column `col_name` with the cumulative profit for the given trades array.
|
||||||
|
:param df: DataFrame with date index
|
||||||
|
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
|
||||||
|
:param col_name: Column name that will be assigned the results
|
||||||
|
:param timeframe: Timeframe used during the operations
|
||||||
|
:return: Returns df with one additional column, col_name, containing the cumulative profit.
|
||||||
|
:raise: ValueError if trade-dataframe was found empty.
|
||||||
|
"""
|
||||||
|
if len(trades) == 0:
|
||||||
|
raise ValueError("Trade dataframe empty.")
|
||||||
|
from freqtrade.exchange import timeframe_to_minutes
|
||||||
|
timeframe_minutes = timeframe_to_minutes(timeframe)
|
||||||
|
# Resample to timeframe to make sure trades match candles
|
||||||
|
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_date'
|
||||||
|
)[['profit_abs']].sum()
|
||||||
|
df.loc[:, col_name] = _trades_sum['profit_abs'].cumsum()
|
||||||
|
# Set first value to 0
|
||||||
|
df.loc[df.iloc[0].name, col_name] = 0
|
||||||
|
# FFill to get continuous
|
||||||
|
df[col_name] = df[col_name].ffill()
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
def _calc_drawdown_series(profit_results: pd.DataFrame, *, date_col: str, value_col: str
|
||||||
|
) -> pd.DataFrame:
|
||||||
|
max_drawdown_df = pd.DataFrame()
|
||||||
|
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
|
||||||
|
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
|
||||||
|
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
|
||||||
|
max_drawdown_df['date'] = profit_results.loc[:, date_col]
|
||||||
|
return max_drawdown_df
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_underwater(trades: pd.DataFrame, *, date_col: str = 'close_date',
|
||||||
|
value_col: str = 'profit_ratio'
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Calculate max drawdown and the corresponding close dates
|
||||||
|
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
|
||||||
|
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
|
||||||
|
:param value_col: Column in DataFrame to use for values (defaults to 'profit_ratio')
|
||||||
|
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue) with absolute max drawdown,
|
||||||
|
high and low time and high and low value.
|
||||||
|
:raise: ValueError if trade-dataframe was found empty.
|
||||||
|
"""
|
||||||
|
if len(trades) == 0:
|
||||||
|
raise ValueError("Trade dataframe empty.")
|
||||||
|
profit_results = trades.sort_values(date_col).reset_index(drop=True)
|
||||||
|
max_drawdown_df = _calc_drawdown_series(profit_results, date_col=date_col, value_col=value_col)
|
||||||
|
|
||||||
|
return max_drawdown_df
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
|
||||||
|
value_col: str = 'profit_abs', starting_balance: float = 0
|
||||||
|
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
|
||||||
|
"""
|
||||||
|
Calculate max drawdown and the corresponding close dates
|
||||||
|
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
|
||||||
|
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
|
||||||
|
:param value_col: Column in DataFrame to use for values (defaults to 'profit_abs')
|
||||||
|
:param starting_balance: Portfolio starting balance - properly calculate relative drawdown.
|
||||||
|
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue, relative_drawdown)
|
||||||
|
with absolute max drawdown, high and low time and high and low value,
|
||||||
|
and the relative account drawdown
|
||||||
|
:raise: ValueError if trade-dataframe was found empty.
|
||||||
|
"""
|
||||||
|
if len(trades) == 0:
|
||||||
|
raise ValueError("Trade dataframe empty.")
|
||||||
|
profit_results = trades.sort_values(date_col).reset_index(drop=True)
|
||||||
|
max_drawdown_df = _calc_drawdown_series(profit_results, date_col=date_col, value_col=value_col)
|
||||||
|
|
||||||
|
idxmin = max_drawdown_df['drawdown'].idxmin()
|
||||||
|
if idxmin == 0:
|
||||||
|
raise ValueError("No losing trade, therefore no drawdown.")
|
||||||
|
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
|
||||||
|
low_date = profit_results.loc[idxmin, date_col]
|
||||||
|
high_val = max_drawdown_df.loc[max_drawdown_df.iloc[:idxmin]
|
||||||
|
['high_value'].idxmax(), 'cumulative']
|
||||||
|
low_val = max_drawdown_df.loc[idxmin, 'cumulative']
|
||||||
|
max_drawdown_rel = 0.0
|
||||||
|
if high_val + starting_balance != 0:
|
||||||
|
max_drawdown_rel = (high_val - low_val) / (high_val + starting_balance)
|
||||||
|
|
||||||
|
return (
|
||||||
|
abs(min(max_drawdown_df['drawdown'])),
|
||||||
|
high_date,
|
||||||
|
low_date,
|
||||||
|
high_val,
|
||||||
|
low_val,
|
||||||
|
max_drawdown_rel
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[float, float]:
|
||||||
|
"""
|
||||||
|
Calculate min/max cumsum of trades, to show if the wallet/stake amount ratio is sane
|
||||||
|
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
|
||||||
|
:param starting_balance: Add starting balance to results, to show the wallets high / low points
|
||||||
|
:return: Tuple (float, float) with cumsum of profit_abs
|
||||||
|
:raise: ValueError if trade-dataframe was found empty.
|
||||||
|
"""
|
||||||
|
if len(trades) == 0:
|
||||||
|
raise ValueError("Trade dataframe empty.")
|
||||||
|
|
||||||
|
csum_df = pd.DataFrame()
|
||||||
|
csum_df['sum'] = trades['profit_abs'].cumsum()
|
||||||
|
csum_min = csum_df['sum'].min() + starting_balance
|
||||||
|
csum_max = csum_df['sum'].max() + starting_balance
|
||||||
|
|
||||||
|
return csum_min, csum_max
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_cagr(days_passed: int, starting_balance: float, final_balance: float) -> float:
|
||||||
|
"""
|
||||||
|
Calculate CAGR
|
||||||
|
:param days_passed: Days passed between start and ending balance
|
||||||
|
:param starting_balance: Starting balance
|
||||||
|
:param final_balance: Final balance to calculate CAGR against
|
||||||
|
:return: CAGR
|
||||||
|
"""
|
||||||
|
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1
|
@ -10,7 +10,7 @@ from typing import Any, Dict
|
|||||||
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
from freqtrade.data.metrics import calculate_max_drawdown
|
||||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
|
@ -8,7 +8,7 @@ from datetime import datetime
|
|||||||
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
from freqtrade.data.metrics import calculate_max_drawdown
|
||||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
|
@ -9,7 +9,7 @@ individual needs.
|
|||||||
"""
|
"""
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
from freqtrade.data.metrics import calculate_max_drawdown
|
||||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
|
@ -9,8 +9,8 @@ from pandas import DataFrame, to_datetime
|
|||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
|
|
||||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT
|
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT
|
||||||
from freqtrade.data.btanalysis import (calculate_cagr, calculate_csum, calculate_market_change,
|
from freqtrade.data.metrics import (calculate_cagr, calculate_csum, calculate_market_change,
|
||||||
calculate_max_drawdown)
|
calculate_max_drawdown)
|
||||||
from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value
|
from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value
|
||||||
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
|
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
|
||||||
|
|
||||||
|
@ -5,12 +5,13 @@ from typing import Any, Dict, List, Optional
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
from freqtrade.data.btanalysis import (analyze_trade_parallelism, calculate_max_drawdown,
|
from freqtrade.data.btanalysis import (analyze_trade_parallelism, extract_trades_of_period,
|
||||||
calculate_underwater, combine_dataframes_with_mean,
|
load_trades)
|
||||||
create_cum_profit, extract_trades_of_period, load_trades)
|
|
||||||
from freqtrade.data.converter import trim_dataframe
|
from freqtrade.data.converter import trim_dataframe
|
||||||
from freqtrade.data.dataprovider import DataProvider
|
from freqtrade.data.dataprovider import DataProvider
|
||||||
from freqtrade.data.history import get_timerange, load_data
|
from freqtrade.data.history import get_timerange, load_data
|
||||||
|
from freqtrade.data.metrics import (calculate_max_drawdown, calculate_underwater,
|
||||||
|
combine_dataframes_with_mean, create_cum_profit)
|
||||||
from freqtrade.enums import CandleType
|
from freqtrade.enums import CandleType
|
||||||
from freqtrade.exceptions import OperationalException
|
from freqtrade.exceptions import OperationalException
|
||||||
from freqtrade.exchange import timeframe_to_prev_date, timeframe_to_seconds
|
from freqtrade.exchange import timeframe_to_prev_date, timeframe_to_seconds
|
||||||
|
@ -5,7 +5,7 @@ from typing import Any, Dict
|
|||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
from freqtrade.data.metrics import calculate_max_drawdown
|
||||||
from freqtrade.persistence import Trade
|
from freqtrade.persistence import Trade
|
||||||
from freqtrade.plugins.protections import IProtection, ProtectionReturn
|
from freqtrade.plugins.protections import IProtection, ProtectionReturn
|
||||||
|
|
||||||
|
@ -8,14 +8,14 @@ from pandas import DataFrame, DateOffset, Timestamp, to_datetime
|
|||||||
|
|
||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
from freqtrade.constants import LAST_BT_RESULT_FN
|
from freqtrade.constants import LAST_BT_RESULT_FN
|
||||||
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS, analyze_trade_parallelism, calculate_cagr,
|
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS, analyze_trade_parallelism,
|
||||||
calculate_csum, calculate_market_change,
|
|
||||||
calculate_max_drawdown, calculate_underwater,
|
|
||||||
combine_dataframes_with_mean, create_cum_profit,
|
|
||||||
extract_trades_of_period, get_latest_backtest_filename,
|
extract_trades_of_period, get_latest_backtest_filename,
|
||||||
get_latest_hyperopt_file, load_backtest_data,
|
get_latest_hyperopt_file, load_backtest_data,
|
||||||
load_backtest_metadata, load_trades, load_trades_from_db)
|
load_backtest_metadata, load_trades, load_trades_from_db)
|
||||||
from freqtrade.data.history import load_data, load_pair_history
|
from freqtrade.data.history import load_data, load_pair_history
|
||||||
|
from freqtrade.data.metrics import (calculate_cagr, calculate_csum, calculate_market_change,
|
||||||
|
calculate_max_drawdown, calculate_underwater,
|
||||||
|
combine_dataframes_with_mean, create_cum_profit)
|
||||||
from freqtrade.exceptions import OperationalException
|
from freqtrade.exceptions import OperationalException
|
||||||
from tests.conftest import CURRENT_TEST_STRATEGY, create_mock_trades
|
from tests.conftest import CURRENT_TEST_STRATEGY, create_mock_trades
|
||||||
from tests.conftest_trades import MOCK_TRADE_COUNT
|
from tests.conftest_trades import MOCK_TRADE_COUNT
|
||||||
|
@ -10,7 +10,8 @@ from plotly.subplots import make_subplots
|
|||||||
from freqtrade.commands import start_plot_dataframe, start_plot_profit
|
from freqtrade.commands import start_plot_dataframe, start_plot_profit
|
||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
from freqtrade.data import history
|
from freqtrade.data import history
|
||||||
from freqtrade.data.btanalysis import create_cum_profit, load_backtest_data
|
from freqtrade.data.btanalysis import load_backtest_data
|
||||||
|
from freqtrade.data.metrics import create_cum_profit
|
||||||
from freqtrade.exceptions import OperationalException
|
from freqtrade.exceptions import OperationalException
|
||||||
from freqtrade.plot.plotting import (add_areas, add_indicators, add_profit, create_plotconfig,
|
from freqtrade.plot.plotting import (add_areas, add_indicators, add_profit, create_plotconfig,
|
||||||
generate_candlestick_graph, generate_plot_filename,
|
generate_candlestick_graph, generate_plot_filename,
|
||||||
|
Loading…
Reference in New Issue
Block a user