chore: split BTAnalyais to metrics

This commit is contained in:
Matthias 2022-04-30 14:47:27 +02:00
parent 2acb68e6e2
commit c6c569b772
10 changed files with 190 additions and 180 deletions

View File

@ -5,7 +5,7 @@ import logging
from copy import copy from copy import copy
from datetime import datetime, timezone from datetime import datetime, timezone
from pathlib import Path from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union from typing import Any, Dict, List, Optional, Union
import numpy as np import numpy as np
import pandas as pd import pandas as pd
@ -400,168 +400,3 @@ def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
trades = trades.loc[(trades['open_date'] >= trades_start) & trades = trades.loc[(trades['open_date'] >= trades_start) &
(trades['close_date'] <= trades_stop)] (trades['close_date'] <= trades_stop)]
return trades return trades
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
"""
Calculate market change based on "column".
Calculation is done by taking the first non-null and the last non-null element of each column
and calculating the pctchange as "(last - first) / first".
Then the results per pair are combined as mean.
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return:
"""
tmp_means = []
for pair, df in data.items():
start = df[column].dropna().iloc[0]
end = df[column].dropna().iloc[-1]
tmp_means.append((end - start) / start)
return float(np.mean(tmp_means))
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
column: str = "close") -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return: DataFrame with the column renamed to the dict key, and a column
named mean, containing the mean of all pairs.
:raise: ValueError if no data is provided.
"""
df_comb = pd.concat([data[pair].set_index('date').rename(
{column: pair}, axis=1)[pair] for pair in data], axis=1)
df_comb['mean'] = df_comb.mean(axis=1)
return df_comb
def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
timeframe: str) -> pd.DataFrame:
"""
Adds a column `col_name` with the cumulative profit for the given trades array.
:param df: DataFrame with date index
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:param col_name: Column name that will be assigned the results
:param timeframe: Timeframe used during the operations
:return: Returns df with one additional column, col_name, containing the cumulative profit.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
from freqtrade.exchange import timeframe_to_minutes
timeframe_minutes = timeframe_to_minutes(timeframe)
# Resample to timeframe to make sure trades match candles
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_date'
)[['profit_abs']].sum()
df.loc[:, col_name] = _trades_sum['profit_abs'].cumsum()
# Set first value to 0
df.loc[df.iloc[0].name, col_name] = 0
# FFill to get continuous
df[col_name] = df[col_name].ffill()
return df
def _calc_drawdown_series(profit_results: pd.DataFrame, *, date_col: str, value_col: str
) -> pd.DataFrame:
max_drawdown_df = pd.DataFrame()
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
max_drawdown_df['date'] = profit_results.loc[:, date_col]
return max_drawdown_df
def calculate_underwater(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_ratio'
):
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_ratio')
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue) with absolute max drawdown,
high and low time and high and low value.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(profit_results, date_col=date_col, value_col=value_col)
return max_drawdown_df
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_abs', starting_balance: float = 0
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_abs')
:param starting_balance: Portfolio starting balance - properly calculate relative drawdown.
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue, relative_drawdown)
with absolute max drawdown, high and low time and high and low value,
and the relative account drawdown
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(profit_results, date_col=date_col, value_col=value_col)
idxmin = max_drawdown_df['drawdown'].idxmin()
if idxmin == 0:
raise ValueError("No losing trade, therefore no drawdown.")
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
low_date = profit_results.loc[idxmin, date_col]
high_val = max_drawdown_df.loc[max_drawdown_df.iloc[:idxmin]
['high_value'].idxmax(), 'cumulative']
low_val = max_drawdown_df.loc[idxmin, 'cumulative']
max_drawdown_rel = 0.0
if high_val + starting_balance != 0:
max_drawdown_rel = (high_val - low_val) / (high_val + starting_balance)
return (
abs(min(max_drawdown_df['drawdown'])),
high_date,
low_date,
high_val,
low_val,
max_drawdown_rel
)
def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[float, float]:
"""
Calculate min/max cumsum of trades, to show if the wallet/stake amount ratio is sane
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
:param starting_balance: Add starting balance to results, to show the wallets high / low points
:return: Tuple (float, float) with cumsum of profit_abs
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
csum_df = pd.DataFrame()
csum_df['sum'] = trades['profit_abs'].cumsum()
csum_min = csum_df['sum'].min() + starting_balance
csum_max = csum_df['sum'].max() + starting_balance
return csum_min, csum_max
def calculate_cagr(days_passed: int, starting_balance: float, final_balance: float) -> float:
"""
Calculate CAGR
:param days_passed: Days passed between start and ending balance
:param starting_balance: Starting balance
:param final_balance: Final balance to calculate CAGR against
:return: CAGR
"""
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1

173
freqtrade/data/metrics.py Normal file
View File

@ -0,0 +1,173 @@
import logging
from typing import Dict, Tuple
import numpy as np
import pandas as pd
logger = logging.getLogger(__name__)
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
"""
Calculate market change based on "column".
Calculation is done by taking the first non-null and the last non-null element of each column
and calculating the pctchange as "(last - first) / first".
Then the results per pair are combined as mean.
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return:
"""
tmp_means = []
for pair, df in data.items():
start = df[column].dropna().iloc[0]
end = df[column].dropna().iloc[-1]
tmp_means.append((end - start) / start)
return float(np.mean(tmp_means))
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
column: str = "close") -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return: DataFrame with the column renamed to the dict key, and a column
named mean, containing the mean of all pairs.
:raise: ValueError if no data is provided.
"""
df_comb = pd.concat([data[pair].set_index('date').rename(
{column: pair}, axis=1)[pair] for pair in data], axis=1)
df_comb['mean'] = df_comb.mean(axis=1)
return df_comb
def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
timeframe: str) -> pd.DataFrame:
"""
Adds a column `col_name` with the cumulative profit for the given trades array.
:param df: DataFrame with date index
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:param col_name: Column name that will be assigned the results
:param timeframe: Timeframe used during the operations
:return: Returns df with one additional column, col_name, containing the cumulative profit.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
from freqtrade.exchange import timeframe_to_minutes
timeframe_minutes = timeframe_to_minutes(timeframe)
# Resample to timeframe to make sure trades match candles
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_date'
)[['profit_abs']].sum()
df.loc[:, col_name] = _trades_sum['profit_abs'].cumsum()
# Set first value to 0
df.loc[df.iloc[0].name, col_name] = 0
# FFill to get continuous
df[col_name] = df[col_name].ffill()
return df
def _calc_drawdown_series(profit_results: pd.DataFrame, *, date_col: str, value_col: str
) -> pd.DataFrame:
max_drawdown_df = pd.DataFrame()
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
max_drawdown_df['date'] = profit_results.loc[:, date_col]
return max_drawdown_df
def calculate_underwater(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_ratio'
):
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_ratio')
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue) with absolute max drawdown,
high and low time and high and low value.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(profit_results, date_col=date_col, value_col=value_col)
return max_drawdown_df
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_abs', starting_balance: float = 0
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_abs')
:param starting_balance: Portfolio starting balance - properly calculate relative drawdown.
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue, relative_drawdown)
with absolute max drawdown, high and low time and high and low value,
and the relative account drawdown
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(profit_results, date_col=date_col, value_col=value_col)
idxmin = max_drawdown_df['drawdown'].idxmin()
if idxmin == 0:
raise ValueError("No losing trade, therefore no drawdown.")
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
low_date = profit_results.loc[idxmin, date_col]
high_val = max_drawdown_df.loc[max_drawdown_df.iloc[:idxmin]
['high_value'].idxmax(), 'cumulative']
low_val = max_drawdown_df.loc[idxmin, 'cumulative']
max_drawdown_rel = 0.0
if high_val + starting_balance != 0:
max_drawdown_rel = (high_val - low_val) / (high_val + starting_balance)
return (
abs(min(max_drawdown_df['drawdown'])),
high_date,
low_date,
high_val,
low_val,
max_drawdown_rel
)
def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[float, float]:
"""
Calculate min/max cumsum of trades, to show if the wallet/stake amount ratio is sane
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
:param starting_balance: Add starting balance to results, to show the wallets high / low points
:return: Tuple (float, float) with cumsum of profit_abs
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
csum_df = pd.DataFrame()
csum_df['sum'] = trades['profit_abs'].cumsum()
csum_min = csum_df['sum'].min() + starting_balance
csum_max = csum_df['sum'].max() + starting_balance
return csum_min, csum_max
def calculate_cagr(days_passed: int, starting_balance: float, final_balance: float) -> float:
"""
Calculate CAGR
:param days_passed: Days passed between start and ending balance
:param starting_balance: Starting balance
:param final_balance: Final balance to calculate CAGR against
:return: CAGR
"""
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1

View File

@ -10,7 +10,7 @@ from typing import Any, Dict
from pandas import DataFrame from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown from freqtrade.data.metrics import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss from freqtrade.optimize.hyperopt import IHyperOptLoss

View File

@ -8,7 +8,7 @@ from datetime import datetime
from pandas import DataFrame from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown from freqtrade.data.metrics import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss from freqtrade.optimize.hyperopt import IHyperOptLoss

View File

@ -9,7 +9,7 @@ individual needs.
""" """
from pandas import DataFrame from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown from freqtrade.data.metrics import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss from freqtrade.optimize.hyperopt import IHyperOptLoss

View File

@ -9,7 +9,7 @@ from pandas import DataFrame, to_datetime
from tabulate import tabulate from tabulate import tabulate
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT
from freqtrade.data.btanalysis import (calculate_cagr, calculate_csum, calculate_market_change, from freqtrade.data.metrics import (calculate_cagr, calculate_csum, calculate_market_change,
calculate_max_drawdown) calculate_max_drawdown)
from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename

View File

@ -5,12 +5,13 @@ from typing import Any, Dict, List, Optional
import pandas as pd import pandas as pd
from freqtrade.configuration import TimeRange from freqtrade.configuration import TimeRange
from freqtrade.data.btanalysis import (analyze_trade_parallelism, calculate_max_drawdown, from freqtrade.data.btanalysis import (analyze_trade_parallelism, extract_trades_of_period,
calculate_underwater, combine_dataframes_with_mean, load_trades)
create_cum_profit, extract_trades_of_period, load_trades)
from freqtrade.data.converter import trim_dataframe from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import get_timerange, load_data from freqtrade.data.history import get_timerange, load_data
from freqtrade.data.metrics import (calculate_max_drawdown, calculate_underwater,
combine_dataframes_with_mean, create_cum_profit)
from freqtrade.enums import CandleType from freqtrade.enums import CandleType
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_prev_date, timeframe_to_seconds from freqtrade.exchange import timeframe_to_prev_date, timeframe_to_seconds

View File

@ -5,7 +5,7 @@ from typing import Any, Dict
import pandas as pd import pandas as pd
from freqtrade.data.btanalysis import calculate_max_drawdown from freqtrade.data.metrics import calculate_max_drawdown
from freqtrade.persistence import Trade from freqtrade.persistence import Trade
from freqtrade.plugins.protections import IProtection, ProtectionReturn from freqtrade.plugins.protections import IProtection, ProtectionReturn

View File

@ -8,14 +8,14 @@ from pandas import DataFrame, DateOffset, Timestamp, to_datetime
from freqtrade.configuration import TimeRange from freqtrade.configuration import TimeRange
from freqtrade.constants import LAST_BT_RESULT_FN from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS, analyze_trade_parallelism, calculate_cagr, from freqtrade.data.btanalysis import (BT_DATA_COLUMNS, analyze_trade_parallelism,
calculate_csum, calculate_market_change,
calculate_max_drawdown, calculate_underwater,
combine_dataframes_with_mean, create_cum_profit,
extract_trades_of_period, get_latest_backtest_filename, extract_trades_of_period, get_latest_backtest_filename,
get_latest_hyperopt_file, load_backtest_data, get_latest_hyperopt_file, load_backtest_data,
load_backtest_metadata, load_trades, load_trades_from_db) load_backtest_metadata, load_trades, load_trades_from_db)
from freqtrade.data.history import load_data, load_pair_history from freqtrade.data.history import load_data, load_pair_history
from freqtrade.data.metrics import (calculate_cagr, calculate_csum, calculate_market_change,
calculate_max_drawdown, calculate_underwater,
combine_dataframes_with_mean, create_cum_profit)
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from tests.conftest import CURRENT_TEST_STRATEGY, create_mock_trades from tests.conftest import CURRENT_TEST_STRATEGY, create_mock_trades
from tests.conftest_trades import MOCK_TRADE_COUNT from tests.conftest_trades import MOCK_TRADE_COUNT

View File

@ -10,7 +10,8 @@ from plotly.subplots import make_subplots
from freqtrade.commands import start_plot_dataframe, start_plot_profit from freqtrade.commands import start_plot_dataframe, start_plot_profit
from freqtrade.configuration import TimeRange from freqtrade.configuration import TimeRange
from freqtrade.data import history from freqtrade.data import history
from freqtrade.data.btanalysis import create_cum_profit, load_backtest_data from freqtrade.data.btanalysis import load_backtest_data
from freqtrade.data.metrics import create_cum_profit
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.plot.plotting import (add_areas, add_indicators, add_profit, create_plotconfig, from freqtrade.plot.plotting import (add_areas, add_indicators, add_profit, create_plotconfig,
generate_candlestick_graph, generate_plot_filename, generate_candlestick_graph, generate_plot_filename,