Merge pull request #2960 from yazeed/sort_indicators_full
indicators_full.j2 and sample_strategy.py ordering and added indicators
This commit is contained in:
commit
c657a1df2b
@ -124,24 +124,70 @@ class SampleStrategy(IStrategy):
|
|||||||
# Momentum Indicators
|
# Momentum Indicators
|
||||||
# ------------------------------------
|
# ------------------------------------
|
||||||
|
|
||||||
# RSI
|
|
||||||
dataframe['rsi'] = ta.RSI(dataframe)
|
|
||||||
|
|
||||||
# ADX
|
# ADX
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
dataframe['adx'] = ta.ADX(dataframe)
|
||||||
|
|
||||||
|
# # Plus Directional Indicator / Movement
|
||||||
|
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
||||||
|
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||||
|
|
||||||
|
# # Minus Directional Indicator / Movement
|
||||||
|
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
||||||
|
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||||
|
|
||||||
# # Aroon, Aroon Oscillator
|
# # Aroon, Aroon Oscillator
|
||||||
# aroon = ta.AROON(dataframe)
|
# aroon = ta.AROON(dataframe)
|
||||||
# dataframe['aroonup'] = aroon['aroonup']
|
# dataframe['aroonup'] = aroon['aroonup']
|
||||||
# dataframe['aroondown'] = aroon['aroondown']
|
# dataframe['aroondown'] = aroon['aroondown']
|
||||||
# dataframe['aroonosc'] = ta.AROONOSC(dataframe)
|
# dataframe['aroonosc'] = ta.AROONOSC(dataframe)
|
||||||
|
|
||||||
# # Awesome oscillator
|
# # Awesome Oscillator
|
||||||
# dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
# dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
||||||
|
|
||||||
# # Commodity Channel Index: values Oversold:<-100, Overbought:>100
|
# # Keltner Channel
|
||||||
|
# keltner = qtpylib.keltner_channel(dataframe)
|
||||||
|
# dataframe["kc_upperband"] = keltner["upper"]
|
||||||
|
# dataframe["kc_lowerband"] = keltner["lower"]
|
||||||
|
# dataframe["kc_middleband"] = keltner["mid"]
|
||||||
|
# dataframe["kc_percent"] = (
|
||||||
|
# (dataframe["close"] - dataframe["kc_lowerband"]) /
|
||||||
|
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
|
||||||
|
# )
|
||||||
|
# dataframe["kc_width"] = (
|
||||||
|
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
|
||||||
|
# )
|
||||||
|
|
||||||
|
# # Ultimate Oscillator
|
||||||
|
# dataframe['uo'] = ta.ULTOSC(dataframe)
|
||||||
|
|
||||||
|
# # Commodity Channel Index: values [Oversold:-100, Overbought:100]
|
||||||
# dataframe['cci'] = ta.CCI(dataframe)
|
# dataframe['cci'] = ta.CCI(dataframe)
|
||||||
|
|
||||||
|
# RSI
|
||||||
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||||||
|
|
||||||
|
# # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||||
|
# rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||||
|
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
|
||||||
|
|
||||||
|
# # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||||||
|
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||||||
|
|
||||||
|
# # Stochastic Slow
|
||||||
|
# stoch = ta.STOCH(dataframe)
|
||||||
|
# dataframe['slowd'] = stoch['slowd']
|
||||||
|
# dataframe['slowk'] = stoch['slowk']
|
||||||
|
|
||||||
|
# Stochastic Fast
|
||||||
|
stoch_fast = ta.STOCHF(dataframe)
|
||||||
|
dataframe['fastd'] = stoch_fast['fastd']
|
||||||
|
dataframe['fastk'] = stoch_fast['fastk']
|
||||||
|
|
||||||
|
# # Stochastic RSI
|
||||||
|
# stoch_rsi = ta.STOCHRSI(dataframe)
|
||||||
|
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
||||||
|
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
||||||
|
|
||||||
# MACD
|
# MACD
|
||||||
macd = ta.MACD(dataframe)
|
macd = ta.MACD(dataframe)
|
||||||
dataframe['macd'] = macd['macd']
|
dataframe['macd'] = macd['macd']
|
||||||
@ -151,60 +197,58 @@ class SampleStrategy(IStrategy):
|
|||||||
# MFI
|
# MFI
|
||||||
dataframe['mfi'] = ta.MFI(dataframe)
|
dataframe['mfi'] = ta.MFI(dataframe)
|
||||||
|
|
||||||
# # Minus Directional Indicator / Movement
|
|
||||||
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
|
||||||
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
||||||
|
|
||||||
# # Plus Directional Indicator / Movement
|
|
||||||
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
|
||||||
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
|
||||||
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
||||||
|
|
||||||
# # ROC
|
# # ROC
|
||||||
# dataframe['roc'] = ta.ROC(dataframe)
|
# dataframe['roc'] = ta.ROC(dataframe)
|
||||||
|
|
||||||
# # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
|
||||||
# rsi = 0.1 * (dataframe['rsi'] - 50)
|
|
||||||
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
|
|
||||||
|
|
||||||
# # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
|
||||||
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
|
||||||
|
|
||||||
# # Stoch
|
|
||||||
# stoch = ta.STOCH(dataframe)
|
|
||||||
# dataframe['slowd'] = stoch['slowd']
|
|
||||||
# dataframe['slowk'] = stoch['slowk']
|
|
||||||
|
|
||||||
# Stoch fast
|
|
||||||
stoch_fast = ta.STOCHF(dataframe)
|
|
||||||
dataframe['fastd'] = stoch_fast['fastd']
|
|
||||||
dataframe['fastk'] = stoch_fast['fastk']
|
|
||||||
|
|
||||||
# # Stoch RSI
|
|
||||||
# stoch_rsi = ta.STOCHRSI(dataframe)
|
|
||||||
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
|
||||||
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
|
||||||
|
|
||||||
# Overlap Studies
|
# Overlap Studies
|
||||||
# ------------------------------------
|
# ------------------------------------
|
||||||
|
|
||||||
# Bollinger bands
|
# Bollinger Bands
|
||||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||||
dataframe['bb_lowerband'] = bollinger['lower']
|
dataframe['bb_lowerband'] = bollinger['lower']
|
||||||
dataframe['bb_middleband'] = bollinger['mid']
|
dataframe['bb_middleband'] = bollinger['mid']
|
||||||
dataframe['bb_upperband'] = bollinger['upper']
|
dataframe['bb_upperband'] = bollinger['upper']
|
||||||
|
dataframe["bb_percent"] = (
|
||||||
|
(dataframe["close"] - dataframe["bb_lowerband"]) /
|
||||||
|
(dataframe["bb_upperband"] - dataframe["bb_lowerband"])
|
||||||
|
)
|
||||||
|
dataframe["bb_width"] = (
|
||||||
|
(dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Bollinger Bands - Weighted (EMA based instead of SMA)
|
||||||
|
# weighted_bollinger = qtpylib.weighted_bollinger_bands(
|
||||||
|
# qtpylib.typical_price(dataframe), window=20, stds=2
|
||||||
|
# )
|
||||||
|
# dataframe["wbb_upperband"] = weighted_bollinger["upper"]
|
||||||
|
# dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
|
||||||
|
# dataframe["wbb_middleband"] = weighted_bollinger["mid"]
|
||||||
|
# dataframe["wbb_percent"] = (
|
||||||
|
# (dataframe["close"] - dataframe["wbb_lowerband"]) /
|
||||||
|
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
|
||||||
|
# )
|
||||||
|
# dataframe["wbb_width"] = (
|
||||||
|
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
|
||||||
|
# dataframe["wbb_middleband"]
|
||||||
|
# )
|
||||||
|
|
||||||
# # EMA - Exponential Moving Average
|
# # EMA - Exponential Moving Average
|
||||||
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
||||||
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||||||
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||||
|
# dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
|
||||||
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
||||||
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
||||||
|
|
||||||
# # SMA - Simple Moving Average
|
# # SMA - Simple Moving Average
|
||||||
# dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
# dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
|
||||||
|
# dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
|
||||||
|
# dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
|
||||||
|
# dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
|
||||||
|
# dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
|
||||||
|
# dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)
|
||||||
|
|
||||||
# SAR Parabol
|
# Parabolic SAR
|
||||||
dataframe['sar'] = ta.SAR(dataframe)
|
dataframe['sar'] = ta.SAR(dataframe)
|
||||||
|
|
||||||
# TEMA - Triple Exponential Moving Average
|
# TEMA - Triple Exponential Moving Average
|
||||||
@ -264,7 +308,7 @@ class SampleStrategy(IStrategy):
|
|||||||
|
|
||||||
# # Chart type
|
# # Chart type
|
||||||
# # ------------------------------------
|
# # ------------------------------------
|
||||||
# # Heikinashi stategy
|
# # Heikin Ashi Strategy
|
||||||
# heikinashi = qtpylib.heikinashi(dataframe)
|
# heikinashi = qtpylib.heikinashi(dataframe)
|
||||||
# dataframe['ha_open'] = heikinashi['open']
|
# dataframe['ha_open'] = heikinashi['open']
|
||||||
# dataframe['ha_close'] = heikinashi['close']
|
# dataframe['ha_close'] = heikinashi['close']
|
||||||
|
@ -2,24 +2,70 @@
|
|||||||
# Momentum Indicators
|
# Momentum Indicators
|
||||||
# ------------------------------------
|
# ------------------------------------
|
||||||
|
|
||||||
# RSI
|
|
||||||
dataframe['rsi'] = ta.RSI(dataframe)
|
|
||||||
|
|
||||||
# ADX
|
# ADX
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
dataframe['adx'] = ta.ADX(dataframe)
|
||||||
|
|
||||||
|
# # Plus Directional Indicator / Movement
|
||||||
|
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
||||||
|
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||||
|
|
||||||
|
# # Minus Directional Indicator / Movement
|
||||||
|
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
||||||
|
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||||
|
|
||||||
# # Aroon, Aroon Oscillator
|
# # Aroon, Aroon Oscillator
|
||||||
# aroon = ta.AROON(dataframe)
|
# aroon = ta.AROON(dataframe)
|
||||||
# dataframe['aroonup'] = aroon['aroonup']
|
# dataframe['aroonup'] = aroon['aroonup']
|
||||||
# dataframe['aroondown'] = aroon['aroondown']
|
# dataframe['aroondown'] = aroon['aroondown']
|
||||||
# dataframe['aroonosc'] = ta.AROONOSC(dataframe)
|
# dataframe['aroonosc'] = ta.AROONOSC(dataframe)
|
||||||
|
|
||||||
# # Awesome oscillator
|
# # Awesome Oscillator
|
||||||
# dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
# dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
||||||
|
|
||||||
# # Commodity Channel Index: values Oversold:<-100, Overbought:>100
|
# # Keltner Channel
|
||||||
|
# keltner = qtpylib.keltner_channel(dataframe)
|
||||||
|
# dataframe["kc_upperband"] = keltner["upper"]
|
||||||
|
# dataframe["kc_lowerband"] = keltner["lower"]
|
||||||
|
# dataframe["kc_middleband"] = keltner["mid"]
|
||||||
|
# dataframe["kc_percent"] = (
|
||||||
|
# (dataframe["close"] - dataframe["kc_lowerband"]) /
|
||||||
|
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
|
||||||
|
# )
|
||||||
|
# dataframe["kc_width"] = (
|
||||||
|
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
|
||||||
|
# )
|
||||||
|
|
||||||
|
# # Ultimate Oscillator
|
||||||
|
# dataframe['uo'] = ta.ULTOSC(dataframe)
|
||||||
|
|
||||||
|
# # Commodity Channel Index: values [Oversold:-100, Overbought:100]
|
||||||
# dataframe['cci'] = ta.CCI(dataframe)
|
# dataframe['cci'] = ta.CCI(dataframe)
|
||||||
|
|
||||||
|
# RSI
|
||||||
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||||||
|
|
||||||
|
# # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||||
|
# rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||||
|
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
|
||||||
|
|
||||||
|
# # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||||||
|
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||||||
|
|
||||||
|
# # Stochastic Slow
|
||||||
|
# stoch = ta.STOCH(dataframe)
|
||||||
|
# dataframe['slowd'] = stoch['slowd']
|
||||||
|
# dataframe['slowk'] = stoch['slowk']
|
||||||
|
|
||||||
|
# Stochastic Fast
|
||||||
|
stoch_fast = ta.STOCHF(dataframe)
|
||||||
|
dataframe['fastd'] = stoch_fast['fastd']
|
||||||
|
dataframe['fastk'] = stoch_fast['fastk']
|
||||||
|
|
||||||
|
# # Stochastic RSI
|
||||||
|
# stoch_rsi = ta.STOCHRSI(dataframe)
|
||||||
|
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
||||||
|
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
||||||
|
|
||||||
# MACD
|
# MACD
|
||||||
macd = ta.MACD(dataframe)
|
macd = ta.MACD(dataframe)
|
||||||
dataframe['macd'] = macd['macd']
|
dataframe['macd'] = macd['macd']
|
||||||
@ -29,60 +75,57 @@ dataframe['macdhist'] = macd['macdhist']
|
|||||||
# MFI
|
# MFI
|
||||||
dataframe['mfi'] = ta.MFI(dataframe)
|
dataframe['mfi'] = ta.MFI(dataframe)
|
||||||
|
|
||||||
# # Minus Directional Indicator / Movement
|
|
||||||
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
|
||||||
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
||||||
|
|
||||||
# # Plus Directional Indicator / Movement
|
|
||||||
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
|
||||||
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
|
||||||
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
||||||
|
|
||||||
# # ROC
|
# # ROC
|
||||||
# dataframe['roc'] = ta.ROC(dataframe)
|
# dataframe['roc'] = ta.ROC(dataframe)
|
||||||
|
|
||||||
# # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
|
||||||
# rsi = 0.1 * (dataframe['rsi'] - 50)
|
|
||||||
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
|
|
||||||
|
|
||||||
# # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
|
||||||
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
|
||||||
|
|
||||||
# # Stoch
|
|
||||||
# stoch = ta.STOCH(dataframe)
|
|
||||||
# dataframe['slowd'] = stoch['slowd']
|
|
||||||
# dataframe['slowk'] = stoch['slowk']
|
|
||||||
|
|
||||||
# Stoch fast
|
|
||||||
stoch_fast = ta.STOCHF(dataframe)
|
|
||||||
dataframe['fastd'] = stoch_fast['fastd']
|
|
||||||
dataframe['fastk'] = stoch_fast['fastk']
|
|
||||||
|
|
||||||
# # Stoch RSI
|
|
||||||
# stoch_rsi = ta.STOCHRSI(dataframe)
|
|
||||||
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
|
||||||
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
|
||||||
|
|
||||||
# Overlap Studies
|
# Overlap Studies
|
||||||
# ------------------------------------
|
# ------------------------------------
|
||||||
|
|
||||||
# Bollinger bands
|
# Bollinger Bands
|
||||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||||
dataframe['bb_lowerband'] = bollinger['lower']
|
dataframe['bb_lowerband'] = bollinger['lower']
|
||||||
dataframe['bb_middleband'] = bollinger['mid']
|
dataframe['bb_middleband'] = bollinger['mid']
|
||||||
dataframe['bb_upperband'] = bollinger['upper']
|
dataframe['bb_upperband'] = bollinger['upper']
|
||||||
|
dataframe["bb_percent"] = (
|
||||||
|
(dataframe["close"] - dataframe["bb_lowerband"]) /
|
||||||
|
(dataframe["bb_upperband"] - dataframe["bb_lowerband"])
|
||||||
|
)
|
||||||
|
dataframe["bb_width"] = (
|
||||||
|
(dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Bollinger Bands - Weighted (EMA based instead of SMA)
|
||||||
|
# weighted_bollinger = qtpylib.weighted_bollinger_bands(
|
||||||
|
# qtpylib.typical_price(dataframe), window=20, stds=2
|
||||||
|
# )
|
||||||
|
# dataframe["wbb_upperband"] = weighted_bollinger["upper"]
|
||||||
|
# dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
|
||||||
|
# dataframe["wbb_middleband"] = weighted_bollinger["mid"]
|
||||||
|
# dataframe["wbb_percent"] = (
|
||||||
|
# (dataframe["close"] - dataframe["wbb_lowerband"]) /
|
||||||
|
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
|
||||||
|
# )
|
||||||
|
# dataframe["wbb_width"] = (
|
||||||
|
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) / dataframe["wbb_middleband"]
|
||||||
|
# )
|
||||||
|
|
||||||
# # EMA - Exponential Moving Average
|
# # EMA - Exponential Moving Average
|
||||||
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
||||||
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||||||
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||||
|
# dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
|
||||||
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
||||||
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
||||||
|
|
||||||
# # SMA - Simple Moving Average
|
# # SMA - Simple Moving Average
|
||||||
# dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
# dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
|
||||||
|
# dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
|
||||||
|
# dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
|
||||||
|
# dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
|
||||||
|
# dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
|
||||||
|
# dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)
|
||||||
|
|
||||||
# SAR Parabol
|
# Parabolic SAR
|
||||||
dataframe['sar'] = ta.SAR(dataframe)
|
dataframe['sar'] = ta.SAR(dataframe)
|
||||||
|
|
||||||
# TEMA - Triple Exponential Moving Average
|
# TEMA - Triple Exponential Moving Average
|
||||||
@ -142,7 +185,7 @@ dataframe['htleadsine'] = hilbert['leadsine']
|
|||||||
|
|
||||||
# # Chart type
|
# # Chart type
|
||||||
# # ------------------------------------
|
# # ------------------------------------
|
||||||
# # Heikinashi stategy
|
# # Heikin Ashi Strategy
|
||||||
# heikinashi = qtpylib.heikinashi(dataframe)
|
# heikinashi = qtpylib.heikinashi(dataframe)
|
||||||
# dataframe['ha_open'] = heikinashi['open']
|
# dataframe['ha_open'] = heikinashi['open']
|
||||||
# dataframe['ha_close'] = heikinashi['close']
|
# dataframe['ha_close'] = heikinashi['close']
|
||||||
|
Loading…
Reference in New Issue
Block a user