move roi_space, stoploss_space, generate_roi_table to IHyperOpt
This commit is contained in:
parent
eeecdd4e5a
commit
c6444a10a8
@ -18,19 +18,24 @@ Configuring hyperopt is similar to writing your own strategy, and many tasks wil
|
|||||||
|
|
||||||
### Checklist on all tasks / possibilities in hyperopt
|
### Checklist on all tasks / possibilities in hyperopt
|
||||||
|
|
||||||
Depending on the space you want to optimize, only some of the below are required.
|
Depending on the space you want to optimize, only some of the below are required:
|
||||||
|
|
||||||
* fill `populate_indicators` - probably a copy from your strategy
|
* fill `populate_indicators` - probably a copy from your strategy
|
||||||
* fill `buy_strategy_generator` - for buy signal optimization
|
* fill `buy_strategy_generator` - for buy signal optimization
|
||||||
* fill `indicator_space` - for buy signal optimzation
|
* fill `indicator_space` - for buy signal optimzation
|
||||||
* fill `sell_strategy_generator` - for sell signal optimization
|
* fill `sell_strategy_generator` - for sell signal optimization
|
||||||
* fill `sell_indicator_space` - for sell signal optimzation
|
* fill `sell_indicator_space` - for sell signal optimzation
|
||||||
* fill `roi_space` - for ROI optimization
|
|
||||||
* fill `generate_roi_table` - for ROI optimization (if you need more than 3 entries)
|
Optional, but recommended:
|
||||||
* fill `stoploss_space` - stoploss optimization
|
|
||||||
* Optional but recommended
|
* copy `populate_buy_trend` from your strategy - otherwise default-strategy will be used
|
||||||
* copy `populate_buy_trend` from your strategy - otherwise default-strategy will be used
|
* copy `populate_sell_trend` from your strategy - otherwise default-strategy will be used
|
||||||
* copy `populate_sell_trend` from your strategy - otherwise default-strategy will be used
|
|
||||||
|
Rarely you may also need to override:
|
||||||
|
|
||||||
|
* `roi_space` - for custom ROI optimization (if you need the ranges for the ROI parameters in the optimization hyperspace that differ from default)
|
||||||
|
* `generate_roi_table` - for custom ROI optimization (if you need more than 4 entries in the ROI table)
|
||||||
|
* `stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default)
|
||||||
|
|
||||||
### 1. Install a Custom Hyperopt File
|
### 1. Install a Custom Hyperopt File
|
||||||
|
|
||||||
@ -345,7 +350,7 @@ def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
|||||||
|
|
||||||
### Understand Hyperopt ROI results
|
### Understand Hyperopt ROI results
|
||||||
|
|
||||||
If you are optimizing ROI, you're result will look as follows and include a ROI table.
|
If you are optimizing ROI, your result will look as follows and include a ROI table:
|
||||||
|
|
||||||
```
|
```
|
||||||
Best result:
|
Best result:
|
||||||
@ -376,6 +381,41 @@ minimal_roi = {
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps) with the values that can vary in the following ranges:
|
||||||
|
|
||||||
|
| # | minutes | ROI percentage |
|
||||||
|
|---|---|---|
|
||||||
|
| 1 | always 0 | 0.03...0.31 |
|
||||||
|
| 2 | 10...40 | 0.02...0.11 |
|
||||||
|
| 3 | 20...100 | 0.01...0.04 |
|
||||||
|
| 4 | 30...220 | always 0 |
|
||||||
|
|
||||||
|
This structure of the ROI table is sufficient in most cases. Override the `roi_space()` method defining the ranges desired if you need components of the ROI tables to vary in other ranges.
|
||||||
|
|
||||||
|
Override the `generate_roi_table()` and `roi_space()` methods and implement your own custom approach for generation of the ROI tables during hyperoptimization in these methods if you need a different structure of the ROI table or other amount of rows (steps) in the ROI tables.
|
||||||
|
|
||||||
|
### Understand Hyperopt Stoploss results
|
||||||
|
|
||||||
|
If you are optimizing stoploss values, your result will look as follows and include stoploss:
|
||||||
|
|
||||||
|
```
|
||||||
|
Best result:
|
||||||
|
|
||||||
|
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
|
||||||
|
|
||||||
|
Buy hyperspace params:
|
||||||
|
{ 'adx-value': 44,
|
||||||
|
'rsi-value': 29,
|
||||||
|
'adx-enabled': False,
|
||||||
|
'rsi-enabled': True,
|
||||||
|
'trigger': 'bb_lower'}
|
||||||
|
Stoploss: -0.37996664668703606
|
||||||
|
```
|
||||||
|
|
||||||
|
If you are optimizing stoploss values, Freqtrade creates the 'stoploss' optimization hyperspace for you. By default, the stoploss values in that hyperspace can vary in the range -0.5...-0.02, which is sufficient in most cases.
|
||||||
|
|
||||||
|
Override the `stoploss_space()` method and define the desired range in it if you need stoploss values to vary in other range during hyperoptimization.
|
||||||
|
|
||||||
### Validate backtesting results
|
### Validate backtesting results
|
||||||
|
|
||||||
Once the optimized strategy has been implemented into your strategy, you should backtest this strategy to make sure everything is working as expected.
|
Once the optimized strategy has been implemented into your strategy, you should backtest this strategy to make sure everything is working as expected.
|
||||||
|
@ -5,7 +5,7 @@ from typing import Any, Callable, Dict, List
|
|||||||
|
|
||||||
import talib.abstract as ta
|
import talib.abstract as ta
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
from skopt.space import Categorical, Dimension, Integer, Real
|
from skopt.space import Categorical, Dimension, Integer
|
||||||
|
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||||
@ -156,42 +156,6 @@ class DefaultHyperOpts(IHyperOpt):
|
|||||||
'sell-sar_reversal'], name='sell-trigger')
|
'sell-sar_reversal'], name='sell-trigger')
|
||||||
]
|
]
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
|
||||||
"""
|
|
||||||
Generate the ROI table that will be used by Hyperopt
|
|
||||||
"""
|
|
||||||
roi_table = {}
|
|
||||||
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
|
||||||
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
|
||||||
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
|
||||||
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
|
||||||
|
|
||||||
return roi_table
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def stoploss_space() -> List[Dimension]:
|
|
||||||
"""
|
|
||||||
Stoploss Value to search
|
|
||||||
"""
|
|
||||||
return [
|
|
||||||
Real(-0.5, -0.02, name='stoploss'),
|
|
||||||
]
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def roi_space() -> List[Dimension]:
|
|
||||||
"""
|
|
||||||
Values to search for each ROI steps
|
|
||||||
"""
|
|
||||||
return [
|
|
||||||
Integer(10, 120, name='roi_t1'),
|
|
||||||
Integer(10, 60, name='roi_t2'),
|
|
||||||
Integer(10, 40, name='roi_t3'),
|
|
||||||
Real(0.01, 0.04, name='roi_p1'),
|
|
||||||
Real(0.01, 0.07, name='roi_p2'),
|
|
||||||
Real(0.01, 0.20, name='roi_p3'),
|
|
||||||
]
|
|
||||||
|
|
||||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Based on TA indicators. Should be a copy of from strategy
|
Based on TA indicators. Should be a copy of from strategy
|
||||||
|
@ -7,7 +7,7 @@ from abc import ABC, abstractmethod
|
|||||||
from typing import Dict, Any, Callable, List
|
from typing import Dict, Any, Callable, List
|
||||||
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
from skopt.space import Dimension
|
from skopt.space import Dimension, Integer, Real
|
||||||
|
|
||||||
|
|
||||||
class IHyperOpt(ABC):
|
class IHyperOpt(ABC):
|
||||||
@ -26,56 +26,80 @@ class IHyperOpt(ABC):
|
|||||||
@abstractmethod
|
@abstractmethod
|
||||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Populate indicators that will be used in the Buy and Sell strategy
|
Populate indicators that will be used in the Buy and Sell strategy.
|
||||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe().
|
||||||
:return: a Dataframe with all mandatory indicators for the strategies
|
:return: A Dataframe with all mandatory indicators for the strategies.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||||
"""
|
"""
|
||||||
Create a buy strategy generator
|
Create a buy strategy generator.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||||
"""
|
"""
|
||||||
Create a sell strategy generator
|
Create a sell strategy generator.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def indicator_space() -> List[Dimension]:
|
def indicator_space() -> List[Dimension]:
|
||||||
"""
|
"""
|
||||||
Create an indicator space
|
Create an indicator space.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def sell_indicator_space() -> List[Dimension]:
|
def sell_indicator_space() -> List[Dimension]:
|
||||||
"""
|
"""
|
||||||
Create a sell indicator space
|
Create a sell indicator space.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@abstractmethod
|
|
||||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||||
"""
|
"""
|
||||||
Create an roi table
|
Create a ROI table.
|
||||||
|
|
||||||
|
Generates the ROI table that will be used by Hyperopt.
|
||||||
|
You may override it in your custom Hyperopt class.
|
||||||
"""
|
"""
|
||||||
|
roi_table = {}
|
||||||
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||||
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||||||
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||||||
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||||||
|
|
||||||
|
return roi_table
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@abstractmethod
|
|
||||||
def stoploss_space() -> List[Dimension]:
|
def stoploss_space() -> List[Dimension]:
|
||||||
"""
|
"""
|
||||||
Create a stoploss space
|
Create a stoploss space.
|
||||||
|
|
||||||
|
Defines range of stoploss values to search.
|
||||||
|
You may override it in your custom Hyperopt class.
|
||||||
"""
|
"""
|
||||||
|
return [
|
||||||
|
Real(-0.5, -0.02, name='stoploss'),
|
||||||
|
]
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@abstractmethod
|
|
||||||
def roi_space() -> List[Dimension]:
|
def roi_space() -> List[Dimension]:
|
||||||
"""
|
"""
|
||||||
Create a roi space
|
Create a ROI space.
|
||||||
|
|
||||||
|
Defines values to search for each ROI steps.
|
||||||
|
You may override it in your custom Hyperopt class.
|
||||||
"""
|
"""
|
||||||
|
return [
|
||||||
|
Integer(10, 120, name='roi_t1'),
|
||||||
|
Integer(10, 60, name='roi_t2'),
|
||||||
|
Integer(10, 40, name='roi_t3'),
|
||||||
|
Real(0.01, 0.04, name='roi_p1'),
|
||||||
|
Real(0.01, 0.07, name='roi_p2'),
|
||||||
|
Real(0.01, 0.20, name='roi_p3'),
|
||||||
|
]
|
||||||
|
@ -18,14 +18,19 @@ from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
|||||||
class SampleHyperOpts(IHyperOpt):
|
class SampleHyperOpts(IHyperOpt):
|
||||||
"""
|
"""
|
||||||
This is a test hyperopt to inspire you.
|
This is a test hyperopt to inspire you.
|
||||||
|
|
||||||
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
|
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
|
||||||
You can:
|
|
||||||
- Rename the class name (Do not forget to update class_name)
|
You can:
|
||||||
- Add any methods you want to build your hyperopt
|
- Rename the class name.
|
||||||
- Add any lib you need to build your hyperopt
|
- Add any methods you want to build your hyperopt.
|
||||||
You must keep:
|
- Add any lib you need to build your hyperopt.
|
||||||
- the prototype for the methods: populate_indicators, indicator_space, buy_strategy_generator,
|
|
||||||
roi_space, generate_roi_table, stoploss_space
|
You must keep:
|
||||||
|
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
|
||||||
|
|
||||||
|
The roi_space, generate_roi_table, stoploss_space methods were moved to the parent class, you may
|
||||||
|
override them here if you need it.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@ -167,42 +172,6 @@ class SampleHyperOpts(IHyperOpt):
|
|||||||
'sell-sar_reversal'], name='sell-trigger')
|
'sell-sar_reversal'], name='sell-trigger')
|
||||||
]
|
]
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
|
||||||
"""
|
|
||||||
Generate the ROI table that will be used by Hyperopt
|
|
||||||
"""
|
|
||||||
roi_table = {}
|
|
||||||
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
|
||||||
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
|
||||||
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
|
||||||
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
|
||||||
|
|
||||||
return roi_table
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def stoploss_space() -> List[Dimension]:
|
|
||||||
"""
|
|
||||||
Stoploss Value to search
|
|
||||||
"""
|
|
||||||
return [
|
|
||||||
Real(-0.5, -0.02, name='stoploss'),
|
|
||||||
]
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def roi_space() -> List[Dimension]:
|
|
||||||
"""
|
|
||||||
Values to search for each ROI steps
|
|
||||||
"""
|
|
||||||
return [
|
|
||||||
Integer(10, 120, name='roi_t1'),
|
|
||||||
Integer(10, 60, name='roi_t2'),
|
|
||||||
Integer(10, 40, name='roi_t3'),
|
|
||||||
Real(0.01, 0.04, name='roi_p1'),
|
|
||||||
Real(0.01, 0.07, name='roi_p2'),
|
|
||||||
Real(0.01, 0.20, name='roi_p3'),
|
|
||||||
]
|
|
||||||
|
|
||||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Based on TA indicators. Should be a copy of from strategy
|
Based on TA indicators. Should be a copy of from strategy
|
||||||
|
Loading…
Reference in New Issue
Block a user