Merge pull request #297 from jblestang/add_stoploss_and_use_sell_profit_only_to_hyperopt
Add stoploss, sell_only_profit and use_sell_signal conf parameters to backtest function
This commit is contained in:
commit
c60ef181dc
@ -41,7 +41,7 @@ def generate_text_table(
|
|||||||
floatfmt = ('s', 'd', '.2f', '.8f', '.1f')
|
floatfmt = ('s', 'd', '.2f', '.8f', '.1f')
|
||||||
tabular_data = []
|
tabular_data = []
|
||||||
headers = ['pair', 'buy count', 'avg profit %',
|
headers = ['pair', 'buy count', 'avg profit %',
|
||||||
'total profit ' + stake_currency, 'avg duration']
|
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||||
for pair in data:
|
for pair in data:
|
||||||
result = results[results.currency == pair]
|
result = results[results.currency == pair]
|
||||||
tabular_data.append([
|
tabular_data.append([
|
||||||
@ -50,6 +50,8 @@ def generate_text_table(
|
|||||||
result.profit_percent.mean() * 100.0,
|
result.profit_percent.mean() * 100.0,
|
||||||
result.profit_BTC.sum(),
|
result.profit_BTC.sum(),
|
||||||
result.duration.mean() * ticker_interval,
|
result.duration.mean() * ticker_interval,
|
||||||
|
result.profit.sum(),
|
||||||
|
result.loss.sum()
|
||||||
])
|
])
|
||||||
|
|
||||||
# Append Total
|
# Append Total
|
||||||
@ -59,12 +61,15 @@ def generate_text_table(
|
|||||||
results.profit_percent.mean() * 100.0,
|
results.profit_percent.mean() * 100.0,
|
||||||
results.profit_BTC.sum(),
|
results.profit_BTC.sum(),
|
||||||
results.duration.mean() * ticker_interval,
|
results.duration.mean() * ticker_interval,
|
||||||
|
results.profit.sum(),
|
||||||
|
results.loss.sum()
|
||||||
])
|
])
|
||||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
|
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
|
||||||
|
|
||||||
|
|
||||||
def backtest(stake_amount: float, processed: Dict[str, DataFrame],
|
def backtest(stake_amount: float, processed: Dict[str, DataFrame],
|
||||||
max_open_trades: int = 0, realistic: bool = True) -> DataFrame:
|
max_open_trades: int = 0, realistic: bool = True, sell_profit_only: bool = False,
|
||||||
|
stoploss: int = -1.00, use_sell_signal: bool = False) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Implements backtesting functionality
|
Implements backtesting functionality
|
||||||
:param stake_amount: btc amount to use for each trade
|
:param stake_amount: btc amount to use for each trade
|
||||||
@ -110,8 +115,12 @@ def backtest(stake_amount: float, processed: Dict[str, DataFrame],
|
|||||||
# Increase trade_count_lock for every iteration
|
# Increase trade_count_lock for every iteration
|
||||||
trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1
|
trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1
|
||||||
|
|
||||||
if min_roi_reached(trade, row2.close, row2.date) or row2.sell == 1:
|
|
||||||
current_profit_percent = trade.calc_profit_percent(rate=row2.close)
|
current_profit_percent = trade.calc_profit_percent(rate=row2.close)
|
||||||
|
if (sell_profit_only and current_profit_percent < 0):
|
||||||
|
continue
|
||||||
|
if min_roi_reached(trade, row2.close, row2.date) or \
|
||||||
|
(row2.sell == 1 and use_sell_signal) or \
|
||||||
|
current_profit_percent <= stoploss:
|
||||||
current_profit_btc = trade.calc_profit(rate=row2.close)
|
current_profit_btc = trade.calc_profit(rate=row2.close)
|
||||||
lock_pair_until = row2.Index
|
lock_pair_until = row2.Index
|
||||||
|
|
||||||
@ -120,11 +129,13 @@ def backtest(stake_amount: float, processed: Dict[str, DataFrame],
|
|||||||
pair,
|
pair,
|
||||||
current_profit_percent,
|
current_profit_percent,
|
||||||
current_profit_btc,
|
current_profit_btc,
|
||||||
row2.Index - row.Index
|
row2.Index - row.Index,
|
||||||
|
current_profit_btc > 0,
|
||||||
|
current_profit_btc < 0
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
break
|
break
|
||||||
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
|
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration', 'profit', 'loss']
|
||||||
return DataFrame.from_records(trades, columns=labels)
|
return DataFrame.from_records(trades, columns=labels)
|
||||||
|
|
||||||
|
|
||||||
@ -172,7 +183,9 @@ def start(args):
|
|||||||
|
|
||||||
# Execute backtest and print results
|
# Execute backtest and print results
|
||||||
results = backtest(
|
results = backtest(
|
||||||
config['stake_amount'], preprocessed, max_open_trades, args.realistic_simulation
|
config['stake_amount'], preprocessed, max_open_trades, args.realistic_simulation,
|
||||||
|
config.get('experimental', {}).get('sell_profit_only', False), config.get('stoploss'),
|
||||||
|
config.get('experimental', {}).get('use_sell_signal', False)
|
||||||
)
|
)
|
||||||
logger.info(
|
logger.info(
|
||||||
'\n====================== BACKTESTING REPORT ================================\n%s',
|
'\n====================== BACKTESTING REPORT ================================\n%s',
|
||||||
|
@ -16,19 +16,22 @@ def test_generate_text_table():
|
|||||||
'currency': ['BTC_ETH', 'BTC_ETH'],
|
'currency': ['BTC_ETH', 'BTC_ETH'],
|
||||||
'profit_percent': [0.1, 0.2],
|
'profit_percent': [0.1, 0.2],
|
||||||
'profit_BTC': [0.2, 0.4],
|
'profit_BTC': [0.2, 0.4],
|
||||||
'duration': [10, 30]
|
'duration': [10, 30],
|
||||||
|
'profit': [2, 0],
|
||||||
|
'loss': [0, 0]
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
print(generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5))
|
print(generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5))
|
||||||
assert generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5) == (
|
assert generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5) == (
|
||||||
'pair buy count avg profit % total profit BTC avg duration\n'
|
'pair buy count avg profit % total profit BTC avg duration profit loss\n' # noqa
|
||||||
'------- ----------- -------------- ------------------ --------------\n'
|
'------- ----------- -------------- ------------------ -------------- -------- ------\n' # noqa
|
||||||
'BTC_ETH 2 15.00 0.60000000 100.0\n'
|
'BTC_ETH 2 15.00 0.60000000 100.0 2 0\n' # noqa
|
||||||
'TOTAL 2 15.00 0.60000000 100.0')
|
'TOTAL 2 15.00 0.60000000 100.0 2 0') # noqa
|
||||||
|
|
||||||
|
|
||||||
def test_get_timeframe():
|
def test_get_timeframe():
|
||||||
data = preprocess(optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST']))
|
data = preprocess(optimize.load_data(
|
||||||
|
ticker_interval=1, pairs=['BTC_UNITEST']))
|
||||||
min_date, max_date = get_timeframe(data)
|
min_date, max_date = get_timeframe(data)
|
||||||
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
||||||
assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
|
assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
|
||||||
@ -39,7 +42,8 @@ def test_backtest(default_conf, mocker):
|
|||||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
exchange._API = Bittrex({'key': '', 'secret': ''})
|
||||||
|
|
||||||
data = optimize.load_data(ticker_interval=5, pairs=['BTC_ETH'])
|
data = optimize.load_data(ticker_interval=5, pairs=['BTC_ETH'])
|
||||||
results = backtest(default_conf['stake_amount'], optimize.preprocess(data), 10, True)
|
results = backtest(default_conf['stake_amount'],
|
||||||
|
optimize.preprocess(data), 10, True)
|
||||||
assert not results.empty
|
assert not results.empty
|
||||||
|
|
||||||
|
|
||||||
@ -49,7 +53,8 @@ def test_backtest_1min_ticker_interval(default_conf, mocker):
|
|||||||
|
|
||||||
# Run a backtesting for an exiting 5min ticker_interval
|
# Run a backtesting for an exiting 5min ticker_interval
|
||||||
data = optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST'])
|
data = optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST'])
|
||||||
results = backtest(default_conf['stake_amount'], optimize.preprocess(data), 1, True)
|
results = backtest(default_conf['stake_amount'],
|
||||||
|
optimize.preprocess(data), 1, True)
|
||||||
assert not results.empty
|
assert not results.empty
|
||||||
|
|
||||||
|
|
||||||
@ -96,7 +101,8 @@ def load_data_test(what):
|
|||||||
[{'T': pair[x]['T'], # Keep old dates
|
[{'T': pair[x]['T'], # Keep old dates
|
||||||
'V': pair[x]['V'], # Keep old volume
|
'V': pair[x]['V'], # Keep old volume
|
||||||
'BV': pair[x]['BV'], # keep too
|
'BV': pair[x]['BV'], # keep too
|
||||||
'O': math.sin(x*hz) / 1000 + base, # But replace O,H,L,C
|
# But replace O,H,L,C
|
||||||
|
'O': math.sin(x * hz) / 1000 + base,
|
||||||
'H': math.sin(x * hz) / 1000 + base + 0.0001,
|
'H': math.sin(x * hz) / 1000 + base + 0.0001,
|
||||||
'L': math.sin(x * hz) / 1000 + base - 0.0001,
|
'L': math.sin(x * hz) / 1000 + base - 0.0001,
|
||||||
'C': math.sin(x * hz) / 1000 + base} for x in range(0, datalen)]}
|
'C': math.sin(x * hz) / 1000 + base} for x in range(0, datalen)]}
|
||||||
@ -119,7 +125,8 @@ def simple_backtest(config, contour, num_results):
|
|||||||
def test_backtest2(default_conf, mocker):
|
def test_backtest2(default_conf, mocker):
|
||||||
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
||||||
data = optimize.load_data(ticker_interval=5, pairs=['BTC_ETH'])
|
data = optimize.load_data(ticker_interval=5, pairs=['BTC_ETH'])
|
||||||
results = backtest(default_conf['stake_amount'], optimize.preprocess(data), 10, True)
|
results = backtest(default_conf['stake_amount'],
|
||||||
|
optimize.preprocess(data), 10, True)
|
||||||
assert not results.empty
|
assert not results.empty
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user