first functional scanning commit
This commit is contained in:
@@ -48,7 +48,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
return dataframe["s"]
|
||||
|
||||
def train(self, unfiltered_dataframe: DataFrame,
|
||||
metadata: dict, dh: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
|
||||
pair: str, dh: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
@@ -60,7 +60,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
"""
|
||||
|
||||
logger.info('--------------------Starting training '
|
||||
f'{metadata["pair"]} --------------------')
|
||||
f'{pair} --------------------')
|
||||
|
||||
# create the full feature list based on user config info
|
||||
dh.training_features_list = dh.find_features(unfiltered_dataframe)
|
||||
@@ -88,7 +88,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
|
||||
model = self.fit(data_dictionary)
|
||||
|
||||
logger.info(f'--------------------done training {metadata["pair"]}--------------------')
|
||||
logger.info(f'--------------------done training {pair}--------------------')
|
||||
|
||||
return model
|
||||
|
||||
|
Reference in New Issue
Block a user