From 35fe37199d67c01d0e853dc51ab460d6a94f6f23 Mon Sep 17 00:00:00 2001 From: thorntwig Date: Thu, 16 Feb 2023 20:04:42 +0100 Subject: [PATCH] fix minor typos --- docs/freqai-configuration.md | 6 +++--- docs/freqai-feature-engineering.md | 2 +- docs/freqai-parameter-table.md | 4 ++-- docs/freqai-reinforcement-learning.md | 2 +- docs/freqai-running.md | 2 +- docs/freqai.md | 6 +++--- 6 files changed, 11 insertions(+), 11 deletions(-) diff --git a/docs/freqai-configuration.md b/docs/freqai-configuration.md index 9d89800be..88415bf59 100644 --- a/docs/freqai-configuration.md +++ b/docs/freqai-configuration.md @@ -165,10 +165,10 @@ Below are the values you can expect to include/use inside a typical strategy dat ## Setting the `startup_candle_count` -The `startup_candle_count` in the FreqAI strategy needs to be set up in the same way as in the standard Freqtrade strategy (see details [here](strategy-customization.md#strategy-startup-period)). This value is used by Freqtrade to ensure that a sufficient amount of data is provided when calling the `dataprovider`, to avoid any NaNs at the beginning of the first training. You can easily set this value by identifying the longest period (in candle units) which is passed to the indicator creation functions (e.g., Ta-Lib functions). In the presented example, `startup_candle_count` is 20 since this is the maximum value in `indicators_periods_candles`. +The `startup_candle_count` in the FreqAI strategy needs to be set up in the same way as in the standard Freqtrade strategy (see details [here](strategy-customization.md#strategy-startup-period)). This value is used by Freqtrade to ensure that a sufficient amount of data is provided when calling the `dataprovider`, to avoid any NaNs at the beginning of the first training. You can easily set this value by identifying the longest period (in candle units) which is passed to the indicator creation functions (e.g., TA-Lib functions). In the presented example, `startup_candle_count` is 20 since this is the maximum value in `indicators_periods_candles`. !!! Note - There are instances where the Ta-Lib functions actually require more data than just the passed `period` or else the feature dataset gets populated with NaNs. Anecdotally, multiplying the `startup_candle_count` by 2 always leads to a fully NaN free training dataset. Hence, it is typically safest to multiply the expected `startup_candle_count` by 2. Look out for this log message to confirm that the data is clean: + There are instances where the TA-Lib functions actually require more data than just the passed `period` or else the feature dataset gets populated with NaNs. Anecdotally, multiplying the `startup_candle_count` by 2 always leads to a fully NaN free training dataset. Hence, it is typically safest to multiply the expected `startup_candle_count` by 2. Look out for this log message to confirm that the data is clean: ``` 2022-08-31 15:14:04 - freqtrade.freqai.data_kitchen - INFO - dropped 0 training points due to NaNs in populated dataset 4319. @@ -205,7 +205,7 @@ All of the aforementioned model libraries implement gradient boosted decision tr * LightGBM: https://lightgbm.readthedocs.io/en/v3.3.2/# * XGBoost: https://xgboost.readthedocs.io/en/stable/# -There are also numerous online articles describing and comparing the algorithms. Some relatively light-weight examples would be [CatBoost vs. LightGBM vs. XGBoost — Which is the best algorithm?](https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40662924#:~:text=In%20CatBoost%2C%20symmetric%20trees%2C%20or,the%20same%20depth%20can%20differ.) and [XGBoost, LightGBM or CatBoost — which boosting algorithm should I use?](https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc). Keep in mind that the performance of each model is highly dependent on the application and so any reported metrics might not be true for your particular use of the model. +There are also numerous online articles describing and comparing the algorithms. Some relatively lightweight examples would be [CatBoost vs. LightGBM vs. XGBoost — Which is the best algorithm?](https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40662924#:~:text=In%20CatBoost%2C%20symmetric%20trees%2C%20or,the%20same%20depth%20can%20differ.) and [XGBoost, LightGBM or CatBoost — which boosting algorithm should I use?](https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc). Keep in mind that the performance of each model is highly dependent on the application and so any reported metrics might not be true for your particular use of the model. Apart from the models already available in FreqAI, it is also possible to customize and create your own prediction models using the `IFreqaiModel` class. You are encouraged to inherit `fit()`, `train()`, and `predict()` to customize various aspects of the training procedures. You can place custom FreqAI models in `user_data/freqaimodels` - and freqtrade will pick them up from there based on the provided `--freqaimodel` name - which has to correspond to the class name of your custom model. Make sure to use unique names to avoid overriding built-in models. diff --git a/docs/freqai-feature-engineering.md b/docs/freqai-feature-engineering.md index 8940aed4a..6389bd9e5 100644 --- a/docs/freqai-feature-engineering.md +++ b/docs/freqai-feature-engineering.md @@ -8,7 +8,7 @@ Low level feature engineering is performed in the user strategy within a set of |---------------|-------------| | `feature_engineering__expand_all()` | This optional function will automatically expand the defined features on the config defined `indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`. | `feature_engineering__expand_basic()` | This optional function will automatically expand the defined features on the config defined `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`. Note: this function does *not* expand across `include_periods_candles`. -| `feature_engineering_standard()` | This optional function will be called once with the dataframe of the base timeframe. This is the final function to be called, which means that the dataframe entering this function will contain all the features and columns from the base asset created by the other `feature_engineering_expand` functions. This function is a good place to do custom exotic feature extractions (e.g. tsfresh). This function is also a good place for any feature that should not be auto-expanded upon (e.g. day of the week). +| `feature_engineering_standard()` | This optional function will be called once with the dataframe of the base timeframe. This is the final function to be called, which means that the dataframe entering this function will contain all the features and columns from the base asset created by the other `feature_engineering_expand` functions. This function is a good place to do custom exotic feature extractions (e.g. tsfresh). This function is also a good place for any feature that should not be auto-expanded upon (e.g., day of the week). | `set_freqai_targets()` | Required function to set the targets for the model. All targets must be prepended with `&` to be recognized by the FreqAI internals. Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the FreqAI config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles." diff --git a/docs/freqai-parameter-table.md b/docs/freqai-parameter-table.md index 43a066fb8..c5f310172 100644 --- a/docs/freqai-parameter-table.md +++ b/docs/freqai-parameter-table.md @@ -51,7 +51,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the | Parameter | Description | |------------|-------------| | | **Data split parameters within the `freqai.data_split_parameters` sub dictionary** -| `data_split_parameters` | Include any additional parameters available from Scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website).
**Datatype:** Dictionary. +| `data_split_parameters` | Include any additional parameters available from scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website).
**Datatype:** Dictionary. | `test_size` | The fraction of data that should be used for testing instead of training.
**Datatype:** Positive float < 1. | `shuffle` | Shuffle the training data points during training. Typically, to not remove the chronological order of data in time-series forecasting, this is set to `False`.
**Datatype:** Boolean.
Defaut: `False`. @@ -88,6 +88,6 @@ Mandatory parameters are marked as **Required** and have to be set in one of the | Parameter | Description | |------------|-------------| | | **Extraneous parameters** -| `freqai.keras` | If the selected model makes use of Keras (typical for Tensorflow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards.
**Datatype:** Boolean.
Default: `False`. +| `freqai.keras` | If the selected model makes use of Keras (typical for TensorFlow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards.
**Datatype:** Boolean.
Default: `False`. | `freqai.conv_width` | The width of a convolutional neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction.
**Datatype:** Integer.
Default: `2`. | `freqai.reduce_df_footprint` | Recast all numeric columns to float32/int32, with the objective of reducing ram/disk usage and decreasing train/inference timing. This parameter is set in the main level of the Freqtrade configuration file (not inside FreqAI).
**Datatype:** Boolean.
Default: `False`. diff --git a/docs/freqai-reinforcement-learning.md b/docs/freqai-reinforcement-learning.md index 7e4110b0b..7358f54c3 100644 --- a/docs/freqai-reinforcement-learning.md +++ b/docs/freqai-reinforcement-learning.md @@ -24,7 +24,7 @@ The framework is built on stable_baselines3 (torch) and OpenAI gym for the base ### Important considerations -As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL training environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks like `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free-will to learn the policy (read: stoploss, take profit, etc.) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world. +As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL training environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks like `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free will to learn the policy (read: stoploss, take profit, etc.) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world. ## Running Reinforcement Learning diff --git a/docs/freqai-running.md b/docs/freqai-running.md index 7127d21cc..1eaee1bf2 100644 --- a/docs/freqai-running.md +++ b/docs/freqai-running.md @@ -120,7 +120,7 @@ In the presented example config, the user will only allow predictions on models Model training parameters are unique to the selected machine learning library. FreqAI allows you to set any parameter for any library using the `model_training_parameters` dictionary in the config. The example config (found in `config_examples/config_freqai.example.json`) shows some of the example parameters associated with `Catboost` and `LightGBM`, but you can add any parameters available in those libraries or any other machine learning library you choose to implement. -Data split parameters are defined in `data_split_parameters` which can be any parameters associated with Scikit-learn's `train_test_split()` function. `train_test_split()` has a parameters called `shuffle` which allows to shuffle the data or keep it unshuffled. This is particularly useful to avoid biasing training with temporally auto-correlated data. More details about these parameters can be found the [Scikit-learn website](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website). +Data split parameters are defined in `data_split_parameters` which can be any parameters associated with scikit-learn's `train_test_split()` function. `train_test_split()` has a parameters called `shuffle` which allows to shuffle the data or keep it unshuffled. This is particularly useful to avoid biasing training with temporally auto-correlated data. More details about these parameters can be found the [scikit-learn website](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website). The FreqAI specific parameter `label_period_candles` defines the offset (number of candles into the future) used for the `labels`. In the presented [example config](freqai-configuration.md#setting-up-the-configuration-file), the user is asking for `labels` that are 24 candles in the future. diff --git a/docs/freqai.md b/docs/freqai.md index 85a8ddc7c..d84ec8d2b 100644 --- a/docs/freqai.md +++ b/docs/freqai.md @@ -4,7 +4,7 @@ ## Introduction -FreqAI is a software designed to automate a variety of tasks associated with training a predictive machine learning model to generate market forecasts given a set of input signals. In general, FreqAI aims to be a sand-box for easily deploying robust machine-learning libraries on real-time data ([details](#freqai-position-in-open-source-machine-learning-landscape)). +FreqAI is a software designed to automate a variety of tasks associated with training a predictive machine learning model to generate market forecasts given a set of input signals. In general, FreqAI aims to be a sandbox for easily deploying robust machine learning libraries on real-time data ([details](#freqai-position-in-open-source-machine-learning-landscape)). Features include: @@ -70,11 +70,11 @@ pip install -r requirements-freqai.txt ### Usage with docker -If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices. +If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices. ### FreqAI position in open-source machine learning landscape -Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data-exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data-collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data. +Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data. ### Citing FreqAI