remove metadata redundancy, fix pca bug
This commit is contained in:
parent
11b2bc269e
commit
c21808ff98
@ -288,25 +288,20 @@ class FreqaiDataKitchen:
|
||||
:data_dictionary: updated dictionary with standardized values.
|
||||
"""
|
||||
|
||||
df_train_features = data_dictionary["train_features"]
|
||||
df = data_dictionary["train_features"]
|
||||
# standardize the data by training stats
|
||||
train_max = df_train_features.max()
|
||||
train_min = df_train_features.min()
|
||||
df_train_features = (
|
||||
2 * (df_train_features - train_min) / (train_max - train_min) - 1
|
||||
train_max = df.max()
|
||||
train_min = df.min()
|
||||
df = (
|
||||
2 * (df - train_min) / (train_max - train_min) - 1
|
||||
)
|
||||
data_dictionary["test_features"] = (
|
||||
2 * (data_dictionary["test_features"] - train_min) / (train_max - train_min) - 1
|
||||
)
|
||||
|
||||
for item in train_max.keys():
|
||||
if not [col for col in df_train_features.columns if col.startswith('PC')]:
|
||||
self.data[item + "_max"] = train_max[item]
|
||||
self.data[item + "_min"] = train_min[item]
|
||||
else:
|
||||
# if PCA is enabled and has transformed the training features
|
||||
self.data[item + "_pca_max"] = train_max[item]
|
||||
self.data[item + "_pca_min"] = train_min[item]
|
||||
self.data[item + "_max"] = train_max[item]
|
||||
self.data[item + "_min"] = train_min[item]
|
||||
|
||||
for item in data_dictionary["train_labels"].keys():
|
||||
if data_dictionary["train_labels"][item].dtype == object:
|
||||
@ -327,16 +322,24 @@ class FreqaiDataKitchen:
|
||||
- 1
|
||||
)
|
||||
|
||||
if not [col for col in df_train_features.columns if col.startswith('PC')]:
|
||||
self.data[f"{item}_max"] = train_labels_max # .to_dict()
|
||||
self.data[f"{item}_min"] = train_labels_min # .to_dict()
|
||||
else:
|
||||
# if PCA is enabled and has transformed the training features
|
||||
self.data[f"{item}_pca_max"] = train_labels_max # .to_dict()
|
||||
self.data[f"{item}_pca_min"] = train_labels_min # .to_dict()
|
||||
|
||||
self.data[f"{item}_max"] = train_labels_max
|
||||
self.data[f"{item}_min"] = train_labels_min
|
||||
return data_dictionary
|
||||
|
||||
def normalize_single_dataframe(self, df: DataFrame) -> DataFrame:
|
||||
|
||||
train_max = df.max()
|
||||
train_min = df.min()
|
||||
df = (
|
||||
2 * (df - train_min) / (train_max - train_min) - 1
|
||||
)
|
||||
|
||||
for item in train_max.keys():
|
||||
self.data[item + "_max"] = train_max[item]
|
||||
self.data[item + "_min"] = train_min[item]
|
||||
|
||||
return df
|
||||
|
||||
def normalize_data_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Normalize a set of data using the mean and standard deviation from
|
||||
@ -344,17 +347,11 @@ class FreqaiDataKitchen:
|
||||
:param df: Dataframe to be standardized
|
||||
"""
|
||||
|
||||
if not [col for col in df.columns if col.startswith('PC')]:
|
||||
id_str = ''
|
||||
else:
|
||||
# if PCA is enabled
|
||||
id_str = '_pca'
|
||||
|
||||
for item in df.keys():
|
||||
df[item] = (
|
||||
2
|
||||
* (df[item] - self.data[f"{item}{id_str}_min"])
|
||||
/ (self.data[f"{item}{id_str}_max"] - self.data[f"{item}{id_str}_min"])
|
||||
* (df[item] - self.data[f"{item}_min"])
|
||||
/ (self.data[f"{item}_max"] - self.data[f"{item}_min"])
|
||||
- 1
|
||||
)
|
||||
|
||||
@ -484,7 +481,7 @@ class FreqaiDataKitchen:
|
||||
index=self.data_dictionary["train_features"].index,
|
||||
)
|
||||
# normalsing transformed training features
|
||||
self.data_dictionary["train_features"] = self.normalize_data(
|
||||
self.data_dictionary["train_features"] = self.normalize_single_dataframe(
|
||||
self.data_dictionary["train_features"])
|
||||
|
||||
# keeping a copy of the non-transformed features so we can check for errors during
|
||||
|
Loading…
Reference in New Issue
Block a user